
M Daniela Candia Carnevali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2498035/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microscopic overview of crinoid regeneration. Microscopy Research and Technique, 2001, 55, 403-426.	2.2	90
2	Production, Characterization and Biocompatibility of Marine Collagen Matrices from an Alternative and Sustainable Source: The Sea Urchin Paracentrotus lividus. Marine Drugs, 2014, 12, 4912-4933.	4.6	71
3	Endocrine disrupting compounds and echinoderms: new ecotoxicological sentinels for the marine ecosystem. Ecotoxicology, 2007, 16, 95-108.	2.4	68
4	Pattern of cell proliferation in the early stages of arm regeneration in the feather starAntedon mediterranea. The Journal of Experimental Zoology, 1995, 272, 464-474.	1.4	54
5	Wound healing and arm regeneration in Ophioderma longicaudum and Amphiura filiformis (Ophiuroidea, Echinodermata): comparative morphogenesis and histogenesis. Zoomorphology, 2010, 129, 1-19.	0.8	53
6	Marine-derived collagen biomaterials from echinoderm connective tissues. Marine Environmental Research, 2017, 128, 46-57.	2.5	52
7	Mechanisms of arm regeneration in the feather starAntedon mediterranea: Healing of wound and early stages of development. The Journal of Experimental Zoology, 1993, 267, 299-317.	1.4	51
8	Cellular and molecular mechanisms of arm regeneration in crinoid echinoderms: the potential of arm explants. Development Genes and Evolution, 1998, 208, 421-430.	0.9	49
9	From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine. Marine Drugs, 2020, 18, 414.	4.6	46
10	Pattern of bromodeoxyuridine incorporation in the advanced stages of arm regeneration in the feather star Antedon mediterranea. Cell and Tissue Research, 1997, 289, 363-374.	2.9	44
11	Dynamic structure of the mesohyl in the sponge Chondrosia reniformis (Porifera, Demospongiae). Zoomorphology, 2001, 121, 109-121.	0.8	42
12	Growth Factors, Heat-Shock Proteins and Regeneration in Echinoderms. Journal of Experimental Biology, 2001, 204, 843-848.	1.7	42
13	Muscle growth in response to changing demands of functions in the teleost Sparus aurata (L.) during development from hatching to juvenile. Anatomy and Embryology, 1998, 198, 487-504.	1.5	41
14	Introduction to the biology of regeneration in echinoderms. Microscopy Research and Technique, 2001, 55, 365-368.	2.2	41
15	New Insights into Mutable Collagenous Tissue: Correlations between the Microstructure and Mechanical State of a Sea-Urchin Ligament. PLoS ONE, 2011, 6, e24822.	2.5	39
16	Triphenyltin alters androgen metabolism in the sea urchin Paracentrotus lividus. Aquatic Toxicology, 2006, 79, 247-256.	4.0	32
17	The mechanically adaptive connective tissue of echinoderms: Its potential for bio-innovation in applied technology and ecology. Marine Environmental Research, 2012, 76, 108-113.	2.5	32
18	The compass depressors ofParacentrotus lividus (Echinodermata, Echinoida): ultrastructural and mechanical aspects of their variable tensility and contractility. Zoomorphology, 1992, 112, 143-153.	0.8	31

#	Article	IF	CITATIONS
19	Anbmp2/4is a new member of the transforming growth factor–β superfamily isolated from a crinoid and involved in regeneration. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1341-1347.	2.6	31
20	Growth factors, heat-shock proteins and regeneration in echinoderms. Journal of Experimental Biology, 2001, 204, 843-8.	1.7	31
21	An unusual Z-system in the obliquely striated muscles of crinoids: three-dimensional structure and computer simulations. Journal of Muscle Research and Cell Motility, 1986, 7, 568-578.	2.0	28
22	Matrix Metalloproteinases in a Sea Urchin Ligament with Adaptable Mechanical Properties. PLoS ONE, 2012, 7, e49016.	2.5	26
23	Z-line in insect muscles: Structural and functional diversities. Bollettino Di Zoologia, 1981, 48, 1-9.	0.3	25
24	The Aristotle's lantern of the sea-urchin Stylocidaris affinis (Echinoida, Cidaridae): functional morphology of the musculo-skeletal system. Zoomorphology, 1993, 113, 173-189.	0.8	25
25	Reâ€growth, morphogenesis, and differentiation during starfish arm regeneration. Wound Repair and Regeneration, 2015, 23, 623-634.	3.0	25
26	PCB exposure and regeneration in crinoids (Echinodermata). Marine Ecology - Progress Series, 2001, 215, 155-167.	1.9	24
27	Tissue distribution of monoamine neurotransmitters in normal and regenerating arms of the feather star Antedon mediterranea. Cell and Tissue Research, 1996, 285, 341-352.	2.9	22
28	Expression of transforming growth factor β-like molecules in normal and regenerating arms of the crinoidAntedon mediterranea: immunocytochemical and biochemical evidence. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1741-1747.	2.6	22
29	Mechanical adaptability of a sponge extracellular matrix: evidence for cellular control of mesohyl stiffness in Chondrosia reniformisNardo. Journal of Experimental Biology, 2006, 209, 4436-4443.	1.7	22
30	Chemical fate and biological effects of several endocrine disrupters compounds in two echinoderm species. Ecotoxicology, 2010, 19, 538-554.	2.4	22
31	Ecophysiology of mesohyl creep in the demosponge Chondrosia reniformis (Porifera: Chondrosida). Journal of Experimental Marine Biology and Ecology, 2012, 428, 24-31.	1.5	22
32	Wound repair during arm regeneration in the red starfish <scp><i>E</i></scp> <i>chinaster sepositus</i> . Wound Repair and Regeneration, 2015, 23, 611-622.	3.0	22
33	Muscle system organization in the echinoderms: II. Microscopic anatomy and functional significance of the muscle-ligament-skeleton system in the arm of the comatulids (Antedon mediterranea). Journal of Morphology, 1985, 185, 59-74.	1.2	21
34	Microstructure and mechanical design in the lantern ossicles of the regular seaâ€urchin <i>Paracentrotus lividusi</i> A scanning electron microscope study. Bollettino Di Zoologia, 1991, 58, 1-42.	0.3	21
35	Localization of calcitonin gene-related peptide mRNA in developing olfactory axons. Cell and Tissue Research, 1998, 294, 81-91.	2.9	21
36	Steroid levels in crinoid echinoderms are altered by exposure to model endocrine disruptors. Steroids, 2006, 71, 489-497.	1.8	21

#	Article	IF	CITATIONS
37	Physiological and immunocytochemical evidence that glutamatergic neurotransmission is involved in the activation of arm autotomy in the featherstar Antedon mediterranea (Echinodermata: Crinoidea). Journal of Experimental Biology, 2010, 213, 2104-2115.	1.7	21
38	Z-line and supercontraction in the hydraulic muscular systems of insect larvae. The Journal of Experimental Zoology, 1978, 203, 15-29.	1.4	20
39	Mechanical analysis of the seaâ€urchin lantern: the overall system in <i>Paracentrotus lividus</i> . Journal of Zoology, 1990, 220, 345-366.	1.7	20
40	Muscle system organization in the echinoderms: III. Fine structure of the contractile apparatus of the arm flexor muscles of the comatulids (Antedon mediterranea). Journal of Morphology, 1985, 185, 75-87.	1.2	19
41	Mechanical properties of sea-urchin lantern muscles: a comparative investigation of intact muscle groups in Paracentrotus lividus (Lam.) and Stylocidaris affinis (Phil.) (Echinodermata, Echinoidea). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1998, 168, 204-212.	1.5	18
42	Correlations Between the Biochemistry and Mechanical States of a Sea-Urchin Ligament: A Mutable Collagenous Structure. Biointerphases, 2012, 7, 38.	1.6	18
43	variable tensility of the peristomial membrane of the sea-urchin Paracentrotus livid US (lamarck). Comparative Biochemistry and Physiology A, Comparative Physiology, 1993, 105, 493-501.	0.6	17
44	Visceral regeneration in the crinoid Antedon mediterranea: basic mechanisms, tissues and cells involved in gut regrowth. Open Life Sciences, 2006, 1, 609-635.	1.4	17
45	Microarchitecture and mechanics of the seaâ€urchin peristomial membrane. Bollettino Di Zoologia, 1994, 61, 39-51.	0.3	16
46	Regenerative Response and Endocrine Disrupters in Crinoid Echinoderms: An Old Experimental Model, a New Ecotoxicological Test. , 2005, 39, 167-200.		16
47	Effects of exposure to ED contaminants (TPT-Cl and Fenarimol) on crinoid echinoderms: comparative analysis of regenerative development and correlated steroid levels. Marine Biology, 2006, 149, 65-77.	1.5	16
48	Comparing dynamic connective tissue in echinoderms and sponges: Morphological and mechanical aspects and environmental sensitivity. Marine Environmental Research, 2014, 93, 123-132.	2.5	15
49	Changes in Ubiquitin Conjugates and Hsp72 Levels During Arm Regeneration in Echinoderms. Marine Biotechnology, 2001, 3, 4-15.	2.4	14
50	Mechanical Properties of the Compass Depressors of the Sea-Urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the Effects of Enzymes, Neurotransmitters and Synthetic Tensilin-Like Protein. PLoS ONE, 2015, 10, e0120339.	2.5	14
51	Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus. Zoology, 2015, 118, 147-160.	1.2	14
52	Echinoderm regenerative response as a sensitive ecotoxicological test for the exposure to endocrine disrupters: effects of p,p′DDE and CPA on crinoid arm regeneration. Cell Biology and Toxicology, 2008, 24, 573-586.	5.3	12
53	The reaction of the sponge Chondrosia reniformis to mechanical stimulation is mediated by the outer epithelium and the release of stiffening factor(s). Zoology, 2014, 117, 282-291.	1.2	12
54	Regeneration neurohormones and growth factors in echinoderms. Canadian Journal of Zoology, 2001, 79, 1171-1208.	1.0	12

#	Article	IF	CITATIONS
55	Primary cell cultures from sea urchin ovaries: a new experimental tool. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 139-145.	1.5	11
56	Echinoderm regeneration: an in vitro approach using the crinoid Antedon mediterranea. Cell and Tissue Research, 2014, 358, 189-201.	2.9	11
57	Organization and mechanical behaviour of myocyte-ligament composites in a sea-urchin lantern: the compass depressors of Stylocidaris affinis (Echinodermata, Echinoida). Zoomorphology, 1998, 118, 87-101.	0.8	9
58	The elusive role of l-glutamate as an echinoderm neurotransmitter: evidence for its involvement in the control of crinoid arm muscles. Zoology, 2013, 116, 1-8.	1.2	9
59	Larval development in the feather star <i>Antedon mediterranea</i> . Invertebrate Reproduction and Development, 2012, 56, 124-137.	0.8	8
60	A biomechanical comparison of the lantern of the cidarid sea-urchinStylocidaris affiniswith the typical camarodont lantern. Journal of Zoology, 1993, 231, 595-610.	1.7	7
61	Atypical Chordoid Structures in the Aristotle's Lantern of Regular Echinoids. Acta Zoologica, 1994, 75, 89-100.	0.8	7
62	Mechanical properties of the peristomial membrane of the cidaroid sea-urchinStylocidaris affinis. Journal of Zoology, 1996, 238, 557-569.	1.7	7
63	New evidence of serotonin involvement in the neurohumoral control of crinoid arm regeneration: effects of parachlorophenylanine and methiothepin. Journal of the Marine Biological Association of the United Kingdom, 2010, 90, 555-562.	0.8	7
64	Exploring endocrine regulation of sea urchin reproductive biology: effects of 17ß-oestradiol. Journal of the Marine Biological Association of the United Kingdom, 2012, 92, 1419-1426.	0.8	7
65	A simple model to predict compound loss processes in aquatic ecotoxicological tests: calculated and measured triphenyltin levels in water and biota. International Journal of Environmental Analytical Chemistry, 2006, 86, 171-184.	3.3	6
66	Slow-acting flight muscles of saturniid moths. Journal of Ultrastructure Research, 1982, 79, 241-249.	1.1	5
67	The peristomial membrane of regular seaâ€urchins: Functional morphology of the epidermis and coelomic lining inParacentrotus lividus(Lamarck). Bollettino Di Zoologia, 1995, 62, 121-135.	0.3	5
68	Functional morphology of the compass-rotular ligament of Echinus esculentus (Echinodermata:) Tj ETQq0 0 0 rgE 9-26.	3T /Overloo 0.8	ck 10 Tf 50 2 5
69	Reproductive cycle of Antedon mediterranea (Crinoidea, Echinodermata): correlation between morphology and physiology. Zoomorphology, 2009, 128, 119-134.	0.8	5
70	A dynamic model for predicting chemical concentrations in water and biota during the planning phase of aquatic ecotoxicological tests. Chemosphere, 2009, 75, 915-923.	8.2	3
71	Extracellular matrix gene expression during arm regeneration in Amphiura filiformis. Cell and Tissue Research, 2020, 381, 411-426.	2.9	3
72	Leucine transport in Xenopus laevis oocytes: Functional and morphological analysis of different defolliculation procedures. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1998, 119, 1009-1017.	1.8	2

#	Article	IF	CITATIONS
73	A spicule-reinforced contractile mesentery: organisation and mechanical behaviour of the exterior coelomic septum of Stylocidaris affinis (Echinodermata, Echinoida). Zoomorphology, 2000, 120, 119-133.	0.8	2
74	Reproductive cycle and sex hormones in the feather star Antedon mediterranea. Journal of Experimental Marine Biology and Ecology, 2012, 422-423, 129-136.	1.5	2
75	Studying Echinodermata Arm Explant Regeneration Using Echinaster sepositus. Methods in Molecular Biology, 2022, 2450, 263-291.	0.9	2
76	Functional morphology of the peristomial membrane of regular sea-urchins: structural organization and mechanical properties in Paracentrotus lividus. , 2020, , 207-216.		0
77	Structural and mechanical aspects of the mouth-frame of the brittlestar Ophioderma longicaudum (Retz.). , 2020, , 387-392.		0