List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2497990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. Journal of the American Chemical Society, 2003, 125, 4430-4431.	13.7	1,323
2	Preparation of Hollow Anatase TiO2Nanospheres via Ostwald Ripening. Journal of Physical Chemistry B, 2004, 108, 3492-3495.	2.6	940
3	Mesoscale Organization of CuO Nanoribbons:  Formation of "Dandelions― Journal of the American Chemical Society, 2004, 126, 8124-8125.	13.7	800
4	Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors. Small, 2005, 1, 566-571.	10.0	604
5	Mesoporous Co ₃ O ₄ and CoO@C Topotactically Transformed from Chrysanthemumâ€like Co(CO ₃) _{0.5} (OH)·0.11H ₂ O and Their Lithiumâ€Storage Properties. Advanced Functional Materials, 2012, 22, 861-871.	14.9	554
6	Fabrication of ZnO "Dandelions―via a Modified Kirkendall Process. Journal of the American Chemical Society, 2004, 126, 16744-16746.	13.7	539
7	Hollowing Sn-Doped TiO ₂ Nanospheres via Ostwald Ripening. Journal of the American Chemical Society, 2007, 129, 15839-15847.	13.7	527
8	Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers. Advanced Materials, 2006, 18, 645-649.	21.0	477
9	Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres. Langmuir, 2005, 21, 1074-1079.	3.5	464
10	Synthetic architecture of interior space for inorganic nanostructures. Journal of Materials Chemistry, 2006, 16, 649-662.	6.7	457
11	Large-Scale Synthesis of High-Quality Ultralong Copper Nanowires. Langmuir, 2005, 21, 3746-3748.	3.5	445
12	Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application. Chemistry of Materials, 2005, 17, 3899-3903.	6.7	430
13	Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites. Angewandte Chemie - International Edition, 2004, 43, 5930-5933.	13.8	429
14	Fabrications of Hollow Nanocubes of Cu2O and Cu via Reductive Self-Assembly of CuO Nanocrystals. Langmuir, 2006, 22, 7369-7377.	3.5	406
15	Preparation of Nanocomposites of Metals, Metal Oxides, and Carbon Nanotubes via Self-Assembly. Journal of the American Chemical Society, 2007, 129, 9401-9409.	13.7	353
16	Hydrothermal Synthesis of α-MoO3 Nanorods via Acidification of Ammonium Heptamolybdate Tetrahydrate. Chemistry of Materials, 2002, 14, 4781-4789.	6.7	342
17	Synthesis, Morphological Control, and Antibacterial Properties of Hollow/Solid Ag ₂ S/Ag Heterodimers. Journal of the American Chemical Society, 2010, 132, 10771-10785.	13.7	334
18	Ostwald Ripening: A Synthetic Approach for Hollow Nanomaterials. Current Nanoscience, 2007, 3, 177-181.	1.2	322

#	Article	IF	CITATIONS
19	Abrupt Structural Transformation in Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a Continuous Function of Nitrate Anions. Journal of Physical Chemistry B, 2001, 105, 1743-1749.	2.6	293
20	Room Temperature Solution Synthesis of Monodispersed Single-Crystalline ZnO Nanorods and Derived Hierarchical Nanostructures. Langmuir, 2004, 20, 4196-4204.	3.5	283
21	Synthesis of complex nanomaterials via Ostwald ripening. Journal of Materials Chemistry A, 2014, 2, 4843-4851.	10.3	280
22	Dimensional Control of Cobalt-hydroxide-carbonate Nanorods and Their Thermal Conversion to One-Dimensional Arrays of Co3O4Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 12643-12649.	2.6	277
23	CO2 Reforming of Methane to Synthesis Gas over Sol–Gel-made Ni/γ-Al2O3 Catalysts from Organometallic Precursors. Journal of Catalysis, 2000, 194, 424-430.	6.2	267
24	Synthesis and Integration of Fe-soc-MOF Cubes into Colloidosomes via a Single-Step Emulsion-Based Approach. Journal of the American Chemical Society, 2013, 135, 10234-10237.	13.7	267
25	Size-Controlled Growth of Co3O4Nanocubes. Chemistry of Materials, 2003, 15, 2829-2835.	6.7	265
26	Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons. Crystal Growth and Design, 2004, 4, 397-402.	3.0	253
27	Synthesis of Single-Crystalline TiO2Nanotubes. Chemistry of Materials, 2002, 14, 1391-1397.	6.7	251
28	Synthesis, Self-Assembly, Disassembly, and Reassembly of Two Types of Cu ₂ 0 Nanocrystals Unifaceted with {001} or {110} Planes. Journal of the American Chemical Society, 2010, 132, 6131-6144.	13.7	251
29	Self-Generation of Tiered Surfactant Superstructures for One-Pot Synthesis of Co3O4Nanocubes and Their Close- and Non-Close-Packed Organizations. Langmuir, 2004, 20, 9780-9790.	3.5	246
30	Size Tuning, Functionalization, and Reactivation of Au in TiO2 Nanoreactors. Angewandte Chemie - International Edition, 2005, 44, 4342-4345.	13.8	237
31	Synthesis and Functionalization of Oriented Metal–Organicâ€Framework Nanosheets: Toward a Series of 2D Catalysts. Advanced Functional Materials, 2016, 26, 3268-3281.	14.9	227
32	Complex α-MoO3Nanostructures with External Bonding Capacity for Self-Assembly. Journal of the American Chemical Society, 2003, 125, 2697-2704.	13.7	203
33	Metalâ^'Support Interactions in Co/Al2O3 Catalysts:  A Comparative Study on Reactivity of Support. Journal of Physical Chemistry B, 2000, 104, 1783-1790.	2.6	201
34	Arresting Butterfly-Like Intermediate Nanocrystals of β-Co(OH)2via Ethylenediamine-Mediated Synthesis. Journal of the American Chemical Society, 2002, 124, 6668-6675.	13.7	196
35	Morphogenesis of Highly Uniform CoCO ₃ Submicrometer Crystals and Their Conversion to Mesoporous Co ₃ O ₄ for Gas-Sensing Applications. Chemistry of Materials, 2009, 21, 4984-4992.	6.7	194
36	Carbon Nanotubes Supported Mesoporous Mesocrystals of Anatase TiO2. Chemistry of Materials, 2008, 20, 2711-2718.	6.7	188

#	Article	IF	CITATIONS
37	Serial Ionic Exchange for the Synthesis of Multishelled Copper Sulfide Hollow Spheres. Angewandte Chemie - International Edition, 2012, 51, 949-952.	13.8	182
38	Creation of Intestine-like Interior Space for Metal-Oxide Nanostructures with a Quasi-Reverse Emulsion. Angewandte Chemie - International Edition, 2004, 43, 5206-5209.	13.8	180
39	Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals. Crystal Growth and Design, 2004, 4, 273-278.	3.0	176
40	Synthetic Architectures of TiO2/H2Ti5O11·H2O, ZnO/H2Ti5O11·H2O, ZnO/TiO2/H2Ti5O11·H2O, and ZnO/TiO2Nanocomposites. Journal of the American Chemical Society, 2005, 127, 270-278.	13.7	166
41	Armored MOFs: Enforcing Soft Microporous MOF Nanocrystals with Hard Mesoporous Silica. Journal of the American Chemical Society, 2014, 136, 5631-5639.	13.7	157
42	Self-Assembled Hollow Spheres of β-Ni(OH) ₂ and Their Derived Nanomaterials. Chemistry of Materials, 2009, 21, 871-883.	6.7	152
43	Self-cleaning and antireflective packaging glass for solar modules. Renewable Energy, 2011, 36, 2489-2493.	8.9	151
44	Mechanistic Investigation on Salt-Mediated Formation of Free-Standing Co3O4Nanocubes at 95 °C. Journal of Physical Chemistry B, 2003, 107, 926-930.	2.6	150
45	Thermal evolution of cobalt hydroxides: a comparative study of their various structural phases. Journal of Materials Chemistry, 1998, 8, 2499-2506.	6.7	149
46	Synthesis and self-assembly of complex hollow materials. Journal of Materials Chemistry, 2011, 21, 7511.	6.7	138
47	Highly Monodisperse M ^{III} -Based soc -MOFs (M = In and Ga) with Cubic and Truncated Cubic Morphologies. Journal of the American Chemical Society, 2012, 134, 13176-13179.	13.7	138
48	Preparation of Monodisperse Au/TiO2Nanocatalysts via Self-Assembly. Chemistry of Materials, 2006, 18, 4270-4277.	6.7	134
49	Integrated Nanocatalysts. Accounts of Chemical Research, 2013, 46, 226-235.	15.6	127
50	Surface and Bulk Integrations of Single-Layered Au or Ag Nanoparticles onto Designated Crystal Planes {110} or {100} of ZIF-8. Chemistry of Materials, 2013, 25, 1761-1768.	6.7	126
51	ZIF-67-Derived Nanoreactors for Controlling Product Selectivity in CO ₂ Hydrogenation. ACS Catalysis, 2017, 7, 7509-7519.	11.2	124
52	Semiconductor Rings Fabricated by Self-Assembly of Nanocrystals. Journal of the American Chemical Society, 2005, 127, 18262-18268.	13.7	121
53	ZnO/PVP Nanocomposite Spheres with Two Hemispheres. Journal of Physical Chemistry C, 2007, 111, 13301-13308.	3.1	120
54	Hydrogen spillover through Matryoshka-type (ZIFs@)nâ^'1ZIFs nanocubes. Nature Communications, 2018, 9, 3778.	12.8	120

#	Article	IF	CITATIONS
55	Decomposition Pathways of Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a Continuous Function of Nitrate Anions. Chemistry of Materials, 2001, 13, 4564-4572.	6.7	118
56	Low-Temperature Synthesis of MgxCo1-xCo2O4Spinel Catalysts for N2O Decomposition. Chemistry of Materials, 2000, 12, 650-658.	6.7	117
57	Targeted Synthesis of Silicomolybdic Acid (Keggin Acid) inside Mesoporous Silica Hollow Spheres for Friedel–Crafts Alkylation. Journal of the American Chemical Society, 2012, 134, 16235-16246.	13.7	116
58	Multifunctional Roles of TiO ₂ Nanoparticles for Architecture of Complex Coreâ^'Shells and Hollow Spheres of SiO ₂ â^'TiO ₂ â^'Polyaniline System. Chemistry of Materials, 2009, 21, 4811-4823.	6.7	114
59	Salt-Assisted Deposition of SnO2 on α-MoO3 Nanorods and Fabrication of Polycrystalline SnO2 Nanotubes. Journal of Physical Chemistry B, 2004, 108, 5867-5874.	2.6	111
60	An Inorganic Route for Controlled Synthesis of W18O49Nanorods and Nanofibers in Solution. Inorganic Chemistry, 2003, 42, 6169-6171.	4.0	110
61	Synthesis of High-Surface-Area Alumina Using Aluminum Tri-sec-butoxideâ^'2,4-Pentanedioneâ^' 2-Propanolâ^'Nitric Acid Precursors. Chemistry of Materials, 2000, 12, 931-939.	6.7	105
62	Integrated nanocatalysts with mesoporous silica/silicate and microporous MOF materials. Coordination Chemistry Reviews, 2016, 320-321, 181-192.	18.8	105
63	Architecture and Preparation of Hollow Catalytic Devices. Advanced Materials, 2019, 31, e1801104.	21.0	105
64	A catalyst-free approach for sol–gel synthesis of highly mixed ZrO2–SiO2 oxides. Journal of Non-Crystalline Solids, 1999, 243, 26-38.	3.1	104
65	Highly Ordered Self-Assemblies of Submicrometer Cu ₂ O Spheres and Their Hollow Chalcogenide Derivatives. Langmuir, 2010, 26, 5963-5970.	3.5	100
66	Low-energy electron-diffraction crystallographic determination for the Cu(110)2×1-O surface structure. Physical Review B, 1990, 41, 5432-5435.	3.2	99
67	Hollow ZnO Microspheres with Complex Nanobuilding Units. Chemistry of Materials, 2007, 19, 5824-5826.	6.7	98
68	Bimetallic Ni–Fe phosphide nanocomposites with a controlled architecture and composition enabling highly efficient electrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6, 2231-2238.	10.3	97
69	Mechanistic Investigation on Self-redox Decompositions of Cobaltâ^'Hydroxideâ^'Nitrate Compounds with Different Nitrate Anion Configurations in Interlayer Space. Chemistry of Materials, 2003, 15, 2040-2048.	6.7	95
70	TiO ₂ Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications. ACS Applied Materials & Interfaces, 2012, 4, 1093-1102.	8.0	92
71	Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures. Chemical Communications, 2016, 52, 11591-11594.	4.1	89
72	Integrated Networks of Mesoporous Silica Nanowires and Their Bifunctional Catalysis–Sorption Application for Oxidative Desulfurization. ACS Catalysis, 2014, 4, 566-576.	11.2	87

#	Article	IF	CITATIONS
73	Sandwichâ€Like Nanocomposite of CoNiO <i>_x</i> /Reduced Graphene Oxide for Enhanced Electrocatalytic Water Oxidation. Advanced Functional Materials, 2017, 27, 1606325.	14.9	87
74	Decomposition Processes of Organic-Anion-Pillared Clays CoaMgbAl(OH)c(TA)d·nH2O. Journal of Physical Chemistry B, 2000, 104, 10206-10214.	2.6	84
75	Creation of Interior Space, Architecture of Shell Structure, and Encapsulation of Functional Materials for Mesoporous SiO ₂ Spheres. Chemistry of Materials, 2011, 23, 4886-4899.	6.7	84
76	Synthetic Architecture of Multiple Core–Shell and Yolk–Shell Structures of (Cu ₂ O@) _{<i>n</i>} Cu ₂ O (<i>n</i> = 1–4) with Centricity and Eccentricity. Chemistry of Materials, 2012, 24, 1917-1929.	6.7	81
77	Oxygen on Cu(100) surface structure studied by scanning tunneling microscopy and by low-energy-electron-diffraction multiple-scattering calculations. Physical Review B, 1990, 42, 11926-11929.	3.2	80
78	The mixed metal cluster (n-Bu4N)2[MoCu3OS3(NCS)3]: the first example of a nest-shaped compound with large third-order polarizability and optical limiting effect. Materials Chemistry and Physics, 1995, 39, 298-303.	4.0	80
79	Control of Surface Area and Porosity of Co3O4via Intercalation of Oxidative or Nonoxidative Anions in Hydrotalcite-like Precursors. Chemistry of Materials, 2000, 12, 3459-3465.	6.7	79
80	Nanobubbles within a Microbubble: Synthesis and Self-Assembly of Hollow Manganese Silicate and Its Metal-Doped Derivatives. ACS Nano, 2014, 8, 6407-6416.	14.6	78
81	Simultaneous Synthesis and Assembly of Noble Metal Nanoclusters with Variable Micellar Templates. Journal of the American Chemical Society, 2014, 136, 13805-13817.	13.7	77
82	Alternative synthetic approaches for metal–organic frameworks: transformation from solid matters. Chemical Communications, 2017, 53, 72-81.	4.1	77
83	Chemical Etching of Molybdenum Trioxide:Â A New Tailor-Made Synthesis of MoO3Catalysts. Inorganic Chemistry, 1998, 37, 1967-1973.	4.0	72
84	3D Networks of CoFePi with Hierarchical Porosity for Effective OER Electrocatalysis. Small, 2018, 14, e1704403.	10.0	72
85	Direct growth of enclosed ZnO nanotubes. Nano Research, 2009, 2, 201-209.	10.4	71
86	Highâ€Temperature Carbon Monoxide Potentiometric Sensor. Journal of the Electrochemical Society, 1993, 140, 1068-1073.	2.9	68
87	Calcium Carbonate Nanotablets: Bridging Artificial to Natural Nacre. Advanced Materials, 2012, 24, 6277-6282.	21.0	68
88	A General Synthetic Approach for Integrated Nanocatalysts of Metal-Silica@ZIFs. Chemistry of Materials, 2016, 28, 326-336.	6.7	67
89	CoHPi Nanoflakes for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 6288-6298.	8.0	67
90	Further LEED investigations of missing row models for the surface structure. Surface Science, 1990, 239, L571-L578.	1.9	66

#	Article	IF	CITATIONS
91	Synthetic Chemistry and Multifunctionality of an Amorphous Ni-MOF-74 Shell on a Ni/SiO ₂ Hollow Catalyst for Efficient Tandem Reactions. Chemistry of Materials, 2019, 31, 5320-5330.	6.7	66
92	Synthesis of Lithium Niobate Gels Using a Metal Alkoxideâ^'Metal Nitrate Precursor. Chemistry of Materials, 1996, 8, 2667-2672.	6.7	63
93	A leed crystallographic analysis for the Cu(100)c(2×2)-N surface structure. Surface Science, 1987, 188, 599-608.	1.9	62
94	Deposition Method for Preparing SERS-Active Gold Nanoparticle Substrates. Analytical Chemistry, 2005, 77, 7462-7471.	6.5	62
95	Site-specific growth of Au particles on ZnO nanopyramids under ultraviolet illumination. Nanoscale, 2011, 3, 4195.	5.6	61
96	Ag nanoprisms with Ag2S attachment. Scientific Reports, 2013, 3, 2177.	3.3	61
97	A Synthetic Protocol for Preparation of Binary Multi-shelled Hollow Spheres and Their Enhanced Oxidation Application. Chemistry of Materials, 2017, 29, 10104-10112.	6.7	60
98	Constrained Growth of MoS ₂ Nanosheets within a Mesoporous Silica Shell and Its Effects on Defect Sites and Catalyst Stability for H ₂ S Decomposition. ACS Catalysis, 2018, 8, 714-724.	11.2	58
99	Control of Nucleation in Solution Growth of Anatase TiO2on Glass Substrate. Journal of Physical Chemistry B, 2003, 107, 12244-12255.	2.6	57
100	Immobilization of Metal–Organic Framework Nanocrystals for Advanced Design of Supported Nanocatalysts. ACS Applied Materials & Interfaces, 2016, 8, 29551-29564.	8.0	57
101	Synthetic Architecture of MgO/C Nanocomposite from Hierarchical-Structured Coordination Polymer toward Enhanced CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 9592-9602.	8.0	57
102	Defect Creation in HKUSTâ€1 via Molecular Imprinting: Attaining Anionic Framework Property and Mesoporosity for Cation Exchange Applications. Advanced Functional Materials, 2017, 27, 1703765.	14.9	57
103	Catalytic decomposition of nitrous oxide on alumina-supported ruthenium catalysts Ru/Al2O3. Applied Catalysis B: Environmental, 1997, 13, 113-122.	20.2	56
104	Synthesis of Nanosize Supported Hydrotalcite-like Compounds CoAlx(OH)2+2x(CO3)y(NO3)x-2y·nH2O on γ-Al2O3. Chemistry of Materials, 2001, 13, 297-303.	6.7	56
105	Synthesis and characterization of Mg–Co catalytic oxide materials forlow-temperature N2O decomposition. Journal of Materials Chemistry, 1997, 7, 493-499.	6.7	55
106	Synthesis of Non-Al-Containing Hydrotalcite-like Compound Mg0.3Coll0.6Colll0.2(OH)2(NO3)0.2·H2O. Chemistry of Materials, 1998, 10, 2277-2283.	6.7	55
107	Symmetric Linear Assembly of Hourglass-like ZnO Nanostructures. Journal of Physical Chemistry C, 2007, 111, 2032-2039.	3.1	55
108	Preparation of a Ruâ€Nanoparticles/Defectiveâ€Graphene Composite as a Highly Efficient Areneâ€Hydrogenation Catalyst. ChemCatChem, 2012, 4, 1938-1942.	3.7	55

#	Article	IF	CITATIONS
109	Solution-Based Epitaxial Growth of Magnetically Responsive Cu@Ni Nanowires. Chemistry of Materials, 2010, 22, 1282-1284.	6.7	54
110	Advanced oxygen evolution catalysis by bimetallic Ni–Fe phosphide nanoparticles encapsulated in nitrogen, phosphorus, and sulphur tri-doped porous carbon. Chemical Communications, 2017, 53, 6025-6028.	4.1	54
111	Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO. Applied Catalysis B: Environmental, 2017, 219, 580-591.	20.2	54
112	Generating Isotropic Superparamagnetic Interconnectivity for the Two-Dimensional Organization of Nanostructured Building Blocks. Angewandte Chemie - International Edition, 2006, 45, 2713-2717.	13.8	50
113	Asymmetric ZnO Nanostructures with an Interior Cavity. Journal of Physical Chemistry B, 2006, 110, 14736-14743.	2.6	49
114	Charge-Switchable Integrated Nanocatalysts for Substrate-Selective Degradation in Advanced Oxidation Processes. Chemistry of Materials, 2016, 28, 4572-4582.	6.7	49
115	lonic Interactions in Crystallite Growth of CoMgAl-hydrotalcite-like Compounds. Chemistry of Materials, 2001, 13, 4555-4563.	6.7	48
116	Confirmation of Suzuki–Miyaura Cross-Coupling Reaction Mechanism through Synthetic Architecture of Nanocatalysts. Journal of the American Chemical Society, 2020, 142, 13823-13832.	13.7	48
117	Metal–Hydroxide and Gold–Nanocluster Interfaces: Enhancing Catalyst Activity and Stability for Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 29348-29357.	3.1	47
118	Transformation of Stöber Silica Spheres to Hollow Hierarchical Single-Crystal ZSM-5 Zeolites with Encapsulated Metal Nanocatalysts for Selective Catalysis. ACS Applied Materials & Interfaces, 2019, 11, 14774-14785.	8.0	47
119	Preparation of Mo-Embedded Mesoporous Carbon Microspheres for Friedel–Crafts Alkylation. Journal of Physical Chemistry C, 2012, 116, 7767-7775.	3.1	46
120	Lewis basicity generated by localised charge imbalance in noble metal nanoparticle-embedded defective metal–organic frameworks. Nature Communications, 2018, 9, 4326.	12.8	46
121	Investigation with low-energy electron diffraction of the adsorbate-induced metal relaxations in the Cu(100)-(2×2)-S surface structure. Physical Review B, 1989, 39, 8000-8002.	3.2	44
122	Oriented attachment: a versatile approach for construction of nanomaterials. International Journal of Nanotechnology, 2007, 4, 329.	0.2	44
123	Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines. Advanced Synthesis and Catalysis, 2014, 356, 475-484.	4.3	44
124	Large-Scale Organizations of MoO3Nanoplatelets with Single-Crystalline MoO3(4,4â€~-bipyridyl)0.5. Journal of Physical Chemistry B, 2003, 107, 2619-2622.	2.6	43
125	Selfâ€Generated Etchant for Synthetic Sculpturing of Cu ₂ Oâ€Au, Cu ₂ O@Au, Au/Cu ₂ O, and 3Dâ€Au Nanostructures. Chemistry - A European Journal, 2012, 18, 14605-14609.	3.3	43
126	Structured Assemblages of Single-Walled 3d Transition Metal Silicate Nanotubes as Precursors for Composition-Tailorable Catalysts. Chemistry of Materials, 2015, 27, 658-667.	6.7	43

#	Article	IF	CITATIONS
127	Correlation of PbMoO4 crystal imperfections to Czochralski growth process. Journal of Crystal Growth, 1997, 171, 136-145.	1.5	42
128	Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO ₂ Capture. Environmental Science & Technology, 2017, 51, 12998-13007.	10.0	42
129	A Hybrid Electrocatalyst with a Coordinatively Unsaturated Metal–Organic Framework Shell and Hollow Ni ₃ S ₂ /NiS Core for Oxygen Evolution Reaction Applications. ACS Applied Materials & Interfaces, 2019, 11, 23180-23191.	8.0	42
130	Crystallization and glass formation in 50Li2O·50Nb2O5 and 25Li2O·25Nb2O5·50SiO2. Journal of Non-Crystalline Solids, 1997, 209, 112-121.	3.1	41
131	Vapour phase growth of orthorhombic molybdenum trioxide crystals at normal pressure of purified air. Journal of Crystal Growth, 1998, 186, 393-402.	1.5	41
132	In-Situ Generation of Maximum Trivalent Cobalt in Synthesis of Hydrotalcite-like Compounds MgxColl1-x-yCollly(OH)2(NO3)y•nH2O. Chemistry of Materials, 2000, 12, 2597-2603.	6.7	41
133	Simultaneous Chemical Modification and Structural Transformation of Stöber Silica Spheres for Integration of Nanocatalysts. Chemistry of Materials, 2012, 24, 140-148.	6.7	41
134	Ultrafine Alloy Nanoparticles Converted from 2D Intercalated Coordination Polymers for Catalytic Application. Advanced Functional Materials, 2016, 26, 5658-5668.	14.9	41
135	Architectural Designs and Synthetic Strategies of Advanced Nanocatalysts. Advanced Materials, 2018, 30, e1802094.	21.0	41
136	Sulfidation of Single Molecular Sheets of MoO3Pillared by Bipyridine in Nanohybrid MoO3(4,4â€ ⁻ -bipyridyl)0.5. Chemistry of Materials, 2003, 15, 433-442.	6.7	40
137	Gold Sponges Prepared via Hydrothermally Activated Self-Assembly of Au Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 6970-6975.	3.1	40
138	Gold(I)–Alkanethiolate Nanotubes. Advanced Materials, 2009, 21, 4962-4965.	21.0	40
139	Formation Combined with Intercalation of Ni and Its Alloy Nanoparticles within Mesoporous Silica for Robust Catalytic Reactions. ACS Applied Materials & amp; Interfaces, 2018, 10, 29435-29447.	8.0	39
140	General Strategy for Preparation of Carbon-Nanotube-Supported Nanocatalysts with Hollow Cavities and Mesoporous Shells. Chemistry of Materials, 2015, 27, 726-734.	6.7	38
141	Hydrodynamic assembly of two-dimensional layered double hydroxide nanostructures. Nature Communications, 2018, 9, 4913.	12.8	38
142	What determines the structures formed by oxygen at low index surfaces of copper?. Progress in Surface Science, 1995, 50, 247-257.	8.3	37
143	Sulfate-Functionalized Carbon/Metal-Oxide Nanocomposites from Hydrotalcite-like Compounds. Nano Letters, 2001, 1, 703-706.	9.1	37
144	Thermal Processes of Volatile RuO2in Nanocrystalline Al2O3Matrixes Involving γ→α Phase Transformation. Chemistry of Materials, 2001, 13, 2403-2412.	6.7	36

#	Article	IF	CITATIONS
145	Mesoporous Bubbleâ€like Manganese Silicate as a Versatile Platform for Design and Synthesis of Nanostructured Catalysts. Chemistry - A European Journal, 2015, 21, 1882-1887.	3.3	36
146	Modification of Ammonia Decomposition Activity of Ruthenium Nanoparticles by N-Doping of CNT Supports. Topics in Catalysis, 2017, 60, 1251-1259.	2.8	36
147	Coordination Chemistry and Antisolvent Strategy to Rare-Earth Solid Solution Colloidal Spheres. Journal of the American Chemical Society, 2012, 134, 19084-19091.	13.7	35
148	Strong coke-resistivity of spherical hollow Ni/SiO2 catalysts with shell-confined high-content Ni nanoparticles for methane dry reforming with CO2. Applied Catalysis B: Environmental, 2022, 310, 121360.	20.2	35
149	A further LEED study for the surface structure designated copper(100)-c(2 .times. 2)-nitrogen. Langmuir, 1989, 5, 829-833.	3.5	34
150	Photochemistry of adsorbed molecules. Part 10.—Harpooning a fixed target: charge transfer from Ag or K substrates to halide adsorbates. Faraday Discussions of the Chemical Society, 1991, 91, 451-463.	2.2	34
151	An alternative synthetic approach for macro–meso–microporous metal–organic frameworks via a "domain growth―mechanism. Chemical Communications, 2016, 52, 8432-8435.	4.1	34
152	Promoting Electrocatalytic Oxygen Evolution over Transition-Metal Phosphide-Based Nanocomposites via Architectural and Electronic Engineering. ACS Applied Materials & Interfaces, 2019, 11, 46825-46838.	8.0	34
153	Monoclinic ZrO ₂ and its supported materials Co/Ni/ZrO ₂ for N ₂ O decomposition. Journal of Materials Research, 1995, 10, 545-552.	2.6	32
154	Synthesis of CollColll2-xAlxO4â^Al2O3Nanocomposites via Decomposition of Coll0.73Colll0.27(OH)2.00(NO3)0.23(CO3)0.02·0.5H2O in a Solâ^Gel-Derived γ-Al2O3Matrix. Chemistry of Materials, 2001, 13, 4722-4730.	6.7	32
155	Nanocomposites of Anataseâ^'Polyaniline Prepared via Self-Assembly. Journal of Physical Chemistry C, 2009, 113, 8097-8106.	3.1	32
156	Trimetal atoms confined in openly accessible nitrogen-doped carbon constructs for an efficient ORR. Journal of Materials Chemistry A, 2020, 8, 17266-17275.	10.3	32
157	A leed crystallographic analysis for the Cu(100)-(2 × 2)-S surface structure. Surface Science, 1986, 177, 329-337.	1.9	31
158	Insertion and Removal of Protons in Single-Crystal Orthorhombic Molybdenum Trioxide under H2S/H2and O2/N2. Chemistry of Materials, 2002, 14, 1788-1796.	6.7	31
159	Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO ₂ . Langmuir, 2008, 24, 14234-14244.	3.5	30
160	Monodisperse Aluminosilicate Spheres with Tunable Al/Si Ratio and Hierarchical Macro-Meso-Microporous Structure. ACS Applied Materials & Interfaces, 2015, 7, 13578-13589.	8.0	30
161	Template-Free Parallel One-Dimensional Assembly of Gold Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 16812-16815.	2.6	29
162	Preparation and integration of nanostructured titanium dioxide. Current Opinion in Chemical Engineering, 2011, 1, 11-17.	7.8	29

#	Article	IF	CITATIONS
163	N2O decomposition over ZrO2 — an in-situ DRIFT, TPR, TPD and XPS study. Applied Surface Science, 1996, 103, 307-314.	6.1	28
164	Synthesis of Co3O4 Spinel at Ambient Conditions. Journal of Materials Research, 2000, 15, 1250-1253.	2.6	28
165	Surfactant-Mediated Self-Assembly of Au Nanoparticles and Their Related Conversion to Complex Mesoporous Structures. Langmuir, 2008, 24, 3740-3746.	3.5	28
166	Architectural Processes and Physicochemical Properties of CoO/ZnO and Zn1â^'xCoxO/Co1â^'yZnyO Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 1373-1385.	3.1	28
167	Decomposition of water-containing nitrous oxide gas using Ru/Al2O3 catalysts. Applied Catalysis B: Environmental, 1998, 17, 89-99.	20.2	27
168	Insertion Direction of Hydrogen in Protonation of α-MoO3. Journal of Physical Chemistry B, 2001, 105, 7178-7181.	2.6	27
169	Reduction and Reconstruction of Co3O4Nanocubes upon Carbon Deposition. Journal of Physical Chemistry B, 2005, 109, 17113-17119.	2.6	27
170	General Synthetic Approach to Heterostructured Nanocrystals Based on Noble Metals and I–VI, II–VI, and I–III–VI Metal Chalcogenides. Langmuir, 2014, 30, 9838-9849.	3.5	27
171	Topological Transformations of Core–Shell Precursors to Hierarchically Hollow Assemblages of Copper Silicate Nanotubes. ACS Applied Materials & Interfaces, 2017, 9, 37210-37218.	8.0	27
172	A new approach for design and synthesis of CoII and CoII,III hydroxide materials. Solid State Sciences, 2000, 2, 187-196.	0.7	26
173	Rectangular vacancy island formation and self-depletion in Czochralski-grown PbMoO4 single crystal during heat treatment. Journal of Crystal Growth, 1996, 160, 119-128.	1.5	25
174	Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts. ChemCatChem, 2012, 4, 1675-1682.	3.7	25
175	Synthesis of stoichiometric lead molybdate PbMoO4: An x-ray diffraction, Fourier transform infrared spectroscopy, and differential thermal analysis study. Journal of Materials Research, 1996, 11, 703-715.	2.6	24
176	Generation of Double-Layer Steps on (010) Surface of Orthorhombic MoO3 via Chemical Etching at Room Temperature. Journal of Physical Chemistry B, 2000, 104, 11891-11898.	2.6	24
177	Surface and Textural Properties of Network-Modified Silica as a Function of Transition Metal Dopant Zirconium. Journal of Physical Chemistry B, 2001, 105, 9093-9100.	2.6	24
178	Lattice Strain Directed Synthesis of Anatase TiO2 Single-Crystal Microplatelet Arrays on α-MoO3 (010) Template. Journal of Physical Chemistry B, 2004, 108, 819-823.	2.6	24
179	Single Solid Precursor-Derived Three-Dimensional Nanowire Networks of CuZn-Silicate for CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2022, 12, 5750-5765.	11.2	24
180	Self-Aligned Growth of Hexagonal TiO2 Nanosphere Arrays on α-MoO3 (010) Surface. Chemistry of Materials, 2003, 15, 3113-3120.	6.7	23

#	Article	IF	CITATIONS
181	MESOSCALE SPHERICAL AND PLANAR ORGANIZATIONS OF GOLD NANOPARTICLES. Functional Materials Letters, 2008, 01, 43-53.	1.2	23
182	Self-Assembled Au/TiO ₂ /CNTs Ternary Nanocomposites for Photocatalytic Applications. Science of Advanced Materials, 2010, 2, 503-513.	0.7	23
183	Bubble formation in Czochralski-grown lead molybdate crystals. Journal of Crystal Growth, 1996, 167, 686-692.	1.5	22
184	Rapid Synthesis of Highly Monodisperse Au _{<i>x</i>} Ag _{1â^'<i>x</i>} Alloy Nanoparticles via a Half-Seeding Approach. Langmuir, 2011, 27, 5633-5643.	3.5	22
185	Proteinâ€Assisted Synthesis of Doubleâ€Shelled CaCO ₃ Microcapsules and Their Mineralization with Heavy Metal Ions. Chemistry - A European Journal, 2012, 18, 1945-1952.	3.3	22
186	Confined Transformation of UiOâ€66 Nanocrystals to Yttriaâ€Stabilized Zirconia with Hierarchical Pore Structures for Catalytic Applications. Advanced Functional Materials, 2019, 29, 1903264.	14.9	22
187	Lowâ€Dimensional Metalâ€Organic Frameworks and their Diverse Functional Roles in Catalysis. ChemCatChem, 2019, 11, 3138-3165.	3.7	22
188	Hybrid OER Electrocatalyst Combining Mesoporous Hollow Spheres of N, P-Doped Carbon with Ultrafine Co ₂ NiO _{<i>x</i>} . ACS Applied Materials & Interfaces, 2020, 12, 50324-50332.	8.0	22
189	Design of hollow spherical Co@hsZSM5@metal dual-layer nanocatalysts for tandem CO ₂ hydrogenation to increase C ₂₊ hydrocarbon selectivity. Journal of Materials Chemistry A, 2020, 8, 12757-12766.	10.3	22
190	Transformation of Stöber Silica Spheres to Hollow Nanocatalysts. ChemNanoMat, 2020, 6, 889-906.	2.8	22
191	Versatile Hollow ZSM-5 Nanoreactors Loaded with Tailorable Metal Catalysts for Selective Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2021, 13, 20524-20538.	8.0	22
192	Retention behaviours of carbon-containing species in as-prepared, water-treated, and transition-metal-contaminated ZrO2 gels. Journal of Non-Crystalline Solids, 1995, 185, 31-40.	3.1	21
193	Spontaneous Formations of Superlattices and Supracrystals from Various Forms of Mn ₃ O ₄ Nanocrystals. Crystal Growth and Design, 2012, 12, 5561-5570.	3.0	21
194	Revamping SiO ₂ Spheres by Core–Shell Porosity Endowment to Construct a Mazelike Nanoreactor for Enhanced Catalysis in CO ₂ Hydrogenation to Methanol. Advanced Functional Materials, 2021, 31, 2102896.	14.9	21
195	Metastability of tetragonal ZrO ₂ derived from Zr- <i>n</i> -propoxide-acetylacetone-water-isopropyl alcohol. Journal of Materials Research, 1998, 13, 2174-2183.	2.6	20
196	Kinetic Study of Vapor-Phase Preparation of Orthorhombic Molybdenum Trioxide. Chemistry of Materials, 1998, 10, 974-979.	6.7	19
197	Design and Synthesis of Supported Nanoscale Metal–Organic Frameworks: Transformation from Transition Metal Silicates. ACS Sustainable Chemistry and Engineering, 2018, 6, 14979-14988. 	6.7	19
198	Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk heterojunction solar cells. European Polymer Journal, 2010, 46, 634-642.	5.4	18

#	Article	IF	CITATIONS
199	Smart Nanocatalysts with Streamline Shapes. ACS Central Science, 2017, 3, 794-799.	11.3	18
200	Surface Ni2+ diffusion in sol—gel-derived tetragonal and monoclinic ZrO2 matrices. Journal of Non-Crystalline Solids, 1995, 181, 49-57.	3.1	17
201	Minimalization of Metallic Pd Formation in Suzuki Reaction with a Solid-State Organometallic Catalyst. ACS Applied Materials & Interfaces, 2020, 12, 33827-33837.	8.0	17
202	Scalable and precise synthesis of two-dimensional metal organic framework nanosheets in a high shear annular microreactor. Chemical Engineering Journal, 2020, 388, 124133.	12.7	17
203	Synthesis of Mesoporous Copper Aluminosilicate Hollow Spheres for Oxidation Reactions. ACS Applied Materials & Interfaces, 2020, 12, 23060-23075.	8.0	17
204	Pt, Ir, Ru, and Rh Nanoparticles Supported on ZIF-67 Nanocubes for Evaluation of Hydrogen Spillover Ability of Noble Metals. ACS Applied Nano Materials, 2021, 4, 6030-6044.	5.0	17
205	Aluminaâ€5upported Metal Catalysts inside a Mesoporous Aluminumâ€5ilicate Shell: Nanoscale Reactors Prepared through the Transformation of MILâ€96(Al) Nanocrystals. ChemCatChem, 2016, 8, 1283-1287.	3.7	15
206	A Shellâ€byâ€Shell Approach for Synthesis of Mesoporous Multiâ€Shelled Hollow MOFs for Catalytic Applications. Particle and Particle Systems Characterization, 2020, 37, 2000101.	2.3	15
207	Pushing nanomaterials up to the kilogram scale – An accelerated approach for synthesizing antimicrobial ZnO with high shear reactors, machine learning and high-throughput analysis. Chemical Engineering Journal, 2021, 426, 131345.	12.7	15
208	Pseudo-dendritic growth in lead molybdate single crystal by Czochralski technique. Journal of Crystal Growth, 1994, 140, 148-156.	1.5	14
209	Growth modes in vapour-phase prepared orthorhombic molybdenum trioxide crystals. Journal of Crystal Growth, 1999, 197, 186-194.	1.5	14
210	Cool Copper Template for the Formation of Oriented Nanocrystalline α-Tantalum. Journal of Physical Chemistry B, 2002, 106, 12366-12368.	2.6	14
211	Transitionâ€Metalâ€Ionsâ€Induced Coalescence: Stitching Au Nanoclusters into Tubular Auâ€Based Nanocomposites. Small, 2016, 12, 2652-2664.	10.0	14
212	Controllable integration of ultrasmall noble metal nanoparticles into mesoporous silica matrixes by a self-assembly method. Chemical Communications, 2018, 54, 7030-7033.	4.1	14
213	Adsorption and On-Site Transformation of Transition Metal Cations on Ni-Doped AlOOH Nanoflowers for OER Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 5953-5962.	6.7	14
214	Cobalt (hcp) nanofibers with pine-tree-leaf hierarchical superstructures. Journal of Materials Chemistry, 2010, 20, 9187.	6.7	13
215	Hierarchy Concepts in Design and Synthesis of Nanocatalysts. ChemCatChem, 2020, 12, 5303-5311.	3.7	13
216	Kinetics of N20 Decomposition on a RuO2/Al2O3 Catalyst. Chemical Engineering Research and Design, 1997, 75, 807-812.	5.6	12

#	Article	IF	CITATIONS
217	Formation Route of Carbon Nanotubes in a Gel Matrix. Chemistry of Materials, 2000, 12, 3466-3471.	6.7	12
218	Memory effect of ZrO2 matrix on surface Co3O4–CoO transition. Journal of Materials Research, 1995, 10, 3096-3105.	2.6	11
219	Three-Dimensional Hierarchical Multimetal-LDH Nanoflakes and Their Derived Spinel Oxides for Efficient Oxygen Evolution. ACS Applied Energy Materials, 2018, 1, 4998-5007.	5.1	11
220	Antisolvent Route to Ultrathin Hollow Spheres of Cerium Oxide for Enhanced CO Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 20501-20510.	8.0	11
221	Water-assisted reconstruction on ferroelectric domain ends of triglycine sulfate (NH2CH2COOH)3·H2SO4 crystals. Journal of Materials Chemistry, 2000, 10, 651-656.	6.7	10
222	Effect of ambient water on crystal morphology and coloration of lead molybdate. Journal of Crystal Growth, 1997, 171, 493-500.	1.5	9
223	The selfâ€catalytic role of zirconium nâ€propoxide in sol–gel syntheses of ZrO2–SiO2 mixed oxides. Journal of Materials Chemistry, 1999, 9, 2647-2652.	6.7	9
224	Synthesis, Self-Assembly, Transformation, and Functionalization of Nanoscale Artificial Allophane Spherules for Catalytic Applications. Chemistry of Materials, 2017, 29, 6076-6086.	6.7	9
225	Diffusion of transition metals (Co,Ni) and its effects on sol–gel derived ZrO2polymorphic stabilities. Journal of Materials Chemistry, 1996, 6, 435-442.	6.7	8
226	Preparation of orthorhombic molybdenum trioxide crystals using a semi-open flux growth system. Journal of Crystal Growth, 1998, 194, 195-202.	1.5	8
227	Kinetically Controlled Growth of Fine Gold Nanofractals from Au(I) via Indirect Galvanic Replacement Reaction. ACS Applied Materials & Interfaces, 2015, 7, 21552-21561.	8.0	8
228	Purification growth of orthorhombic molybdenum trioxide crystals from alkali-metal-containing Mo-sources. Journal of Crystal Growth, 1999, 203, 547-553.	1.5	7
229	Assembly of Two-Dimensional Metal Organic Framework Superstructures <i>via</i> Solvent-Mediated Oriented Attachment. Journal of Physical Chemistry C, 2021, 125, 22837-22847.	3.1	7
230	Surface reconstruction, modification and functionalization of natural diatomites for miniaturization of shaped heterogeneous catalysts. Nano Materials Science, 2023, 5, 293-311.	8.8	7
231	Two-level growth of potassium niobate KNbO3 single crystals: a new growth method for ABO3-type materials. Journal of Crystal Growth, 1996, 160, 296-304.	1.5	6
232	Effects of meniscus on the directional growth of potassium niobate single crystals. Journal of Crystal Growth, 1996, 160, 289-295.	1.5	6
233	Secondary ionic forces in lead molybdate melt solidification. Journal of Materials Research, 1998, 13, 1426-1429.	2.6	6
234	Mesoporous Silica Encapsulated Metal-Organic Frameworks for Heterogeneous Catalysis. Matter, 2020, 3, 332-334.	10.0	6

#	Article	IF	CITATIONS
235	Nanowire Networks of Metal–Organosilicates as Reversible Pd(II) Reservoirs for Suzuki Coupling Reactions. ACS Applied Nano Materials, 2021, 4, 10886-10901.	5.0	6
236	Growth kinetic study of potassium niobate single crystal: a new method for high time-resolution kinetic data of ABO 3 -type materials. Journal of Crystal Growth, 1997, 173, 446-455.	1.5	5
237	TiO2/C tetragons with a double-side concave nanostructure and its high rate performance on Na-ion storage. Applied Surface Science, 2021, 567, 150756.	6.1	5
238	Surface reconstruction in TGS family crystals under humidity and temperature controls. Materials Research Innovations, 1999, 2, 289-298.	2.3	3
239	Effect of nanostructured supports on catalytic methane decomposition. Pure and Applied Chemistry, 2000, 72, 327-331.	1.9	3
240	Via Resistance Reduction using "Cool―PVD-Ta Processing. Journal of the Electrochemical Society, 2003, 150, G766.	2.9	3
241	A direct method for ultrafine gold networks with nanometre scale ligaments. International Journal of Nanotechnology, 2011, 8, 816.	0.2	3
242	Revamping SiO ₂ Spheres by Core–Shell Porosity Endowment to Construct a Mazelike Nanoreactor for Enhanced Catalysis in CO ₂ Hydrogenation to Methanol (Adv. Funct.) Tj ETQq0 0 0 1	rg ₿ ₮.∲Over	loæk 10 Tf 5(
243	Nanotechnology for emerging applications. Current Opinion in Chemical Engineering, 2012, 1, 89-90.	7.8	2
244	Kinetics of chain reactions between organochromium macrocyclic complexes and iodine. Journal of Organometallic Chemistry, 1994, 484, 59-65.	1.8	1
245	Catalytic decomposition of high-concentration nitrous oxide N2O. Studies in Surface Science and Catalysis, 1998, , 485-494.	1.5	1
246	Synthetic Architecture of Inorganic Nanomaterials. , 2006, , 25-56.		1
247	Self-Assembly: Calcium Carbonate Nanotablets: Bridging Artificial to Natural Nacre (Adv. Mater.) Tj ETQq1 1 0.78	4314 rgBT 21.0	/Overlock 1
248	Nanomaterials for catalysis, energy and sustainability. Current Opinion in Chemical Engineering, 2013, 2, 139-141.	7.8	1
249	Nanocatalysts: Architectural Designs and Synthetic Strategies of Advanced Nanocatalysts (Adv.) Tj ETQq1 1 0.78	4314 rgBT 21.0	Overlock
250	Catalytic decomposition of nitrous oxide N2O: a study for p-block-element lead in PbO_ZrO2/Al2O3 systems. Applied Catalysis B: Environmental, 1996, 9, 149-165.	20.2	1
251	An Inorganic Route for Controlled Synthesis of W18O49 Nanorods and Nanofibers in Solution ChemInform, 2003, 34, no.	0.0	0
252	Size Tuning, Functionalization, and Reactivation of Au in TiO2 Nanoreactors ChemInform, 2005, 36, no.	0.0	0

0

#	Article	IF	CITATIONS
253	Editorial overview: Nanotechnology: In situ and operando evaluation tools for nanotechnology. Current Opinion in Chemical Engineering, 2016, 12, iv-vi.	7.8	0

Nanostructured Catalysts. , 2008, , 2974-2985.