Mikael Ehn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2497847/publications.pdf

Version: 2024-02-01

145 papers 18,703 citations

26567

56

h-index

127 g-index

255 all docs

255 docs citations

times ranked

255

8091 citing authors

#	Article	IF	CITATIONS
1	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	6.0	3,374
2	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	13.7	1,448
3	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	13.7	1,114
4	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	6.0	876
5	Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chemical Reviews, 2019, 119, 3472-3509.	23.0	460
6	A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3, 1039-1053.	1.2	436
7	Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6634-6639.	3.3	415
8	Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 2018, 361, 278-281.	6.0	415
9	Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmospheric Chemistry and Physics, 2012, 12, 4117-4125.	1.9	393
10	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	1.9	392
11	A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmospheric Measurement Techniques, 2014, 7, 983-1001.	1.2	345
12	Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7123-7128.	3.3	337
13	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	1.9	308
14	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	3.3	300
15	Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophysical Research Letters, 2010, 37, .	1.5	257
16	Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation. Annual Review of Physical Chemistry, 2014, 65, 21-37.	4.8	242
17	Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.	13.7	237
18	The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene. Journal of the American Chemical Society, 2014, 136, 15596-15606.	6.6	236

#	Article	IF	CITATIONS
19	Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics, 2011, 11, 767-798.	1.9	228
20	Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmospheric Chemistry and Physics, 2012, 12, 5113-5127.	1.9	222
21	Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature, 2019, 565, 587-593.	13.7	222
22	Rapid Autoxidation Forms Highly Oxidized RO ₂ Radicals in the Atmosphere. Angewandte Chemie - International Edition, 2014, 53, 14596-14600.	7.2	186
23	Hydroxyl radical-induced formation of highly oxidized organic compounds. Nature Communications, 2016, 7, 13677.	5.8	178
24	Composition and temporal behavior of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2010, 10, 8513-8530.	1.9	170
25	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
26	Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals formed in the ozonolysis of alkenes – deduced from structure–product relationships. Atmospheric Chemistry and Physics, 2015, 15, 6745-6765.	1.9	162
27	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. Atmospheric Chemistry and Physics, 2011, 11, 9019-9036.	1.9	160
28	Atmospheric nucleation: highlights of the EUCAARI project and future directions. Atmospheric Chemistry and Physics, 2010, 10, 10829-10848.	1.9	144
29	Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 4253-4271.	1.9	126
30	Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw. Atmospheric Chemistry and Physics, 2011, 11, 2603-2624.	1.9	126
31	Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. Atmospheric Chemistry and Physics, 2015, 15, 7765-7776.	1.9	126
32	Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest. Atmospheric Chemistry and Physics, 2011, 11, 13269-13285.	1.9	121
33	Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species. Atmospheric Measurement Techniques, 2019, 12, 2403-2421.	1.2	119
34	Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization. Atmospheric Chemistry and Physics, 2016, 16, 12715-12731.	1.9	118
35	Aerosol hygroscopicity and CCN activation kinetics in a boreal forest environment during the 2007 EUCAARI campaign. Atmospheric Chemistry and Physics, 2011, 11, 12369-12386.	1.9	110
36	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	1.9	108

#	Article	IF	Citations
37	Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene. Journal of Physical Chemistry A, 2015, 119, 4633-4650.	1.1	101
38	Modeling the Charging of Highly Oxidized Cyclohexene Ozonolysis Products Using Nitrate-Based Chemical Ionization. Journal of Physical Chemistry A, 2015, 119, 6339-6345.	1.1	99
39	Formation of Highly Oxidized Radicals and Multifunctional Products from the Atmospheric Oxidation of Alkylbenzenes. Environmental Science & Environmen	4.6	99
40	Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid. Atmospheric Chemistry and Physics, 2007, 7, 211-222.	1.9	95
41	α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios. Journal of Physical Chemistry A, 2016, 120, 2569-2582.	1.1	95
42	Factors controlling the evaporation of secondary organic aerosol from αâ€pinene ozonolysis. Geophysical Research Letters, 2017, 44, 2562-2570.	1.5	95
43	Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids. Atmospheric Chemistry and Physics, 2014, 14, 12143-12153.	1.9	94
44	The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Nature Communications, 2019, 10, 4370.	5.8	91
45	Computational Study of Hydrogen Shifts and Ring-Opening Mechanisms in α-Pinene Ozonolysis Products. Journal of Physical Chemistry A, 2015, 119, 11366-11375.	1.1	89
46	Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2010, 10, 2063-2077.	1.9	87
47	Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 2018, 9, 157.	5.8	86
48	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	1.9	84
49	Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics. Atmospheric Chemistry and Physics, 2020, 20, 515-537.	1.9	78
50	Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmospheric Research, 2008, 90, 278-286.	1.8	77
51	Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth. Atmospheric Chemistry and Physics, 2012, 12, 9427-9439.	1.9	76
52	Sub-3 nm particle size and composition dependent response of a nano-CPC battery. Atmospheric Measurement Techniques, 2014, 7, 689-700.	1.2	73
53	An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions. Aerosol Science and Technology, 2011, 45, 522-532.	1.5	72
54	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	1.5	70

#	Article	IF	CITATIONS
55	The effect of H ₂ SO ₄ – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid. Atmospheric Chemistry and Physics, 2011, 11, 3007-3019.	1.9	69
56	The role of highly oxygenated moleculesÂ(HOMs) in determining the composition of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2017, 17, 13819-13831.	1.9	66
57	Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities. Nature Geoscience, 2022, 15, 255-261.	5.4	64
58	Suppression of new particle formation from monoterpene oxidation by NO _x . Atmospheric Chemistry and Physics, 2014, 14, 2789-2804.	1.9	63
59	Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview. Atmospheric Chemistry and Physics, 2010, 10, 8413-8435.	1.9	61
60	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	4.7	61
61	In situ laboratory sea spray production during the Marine Aerosol Production 2006 cruise on the northeastern Atlantic Ocean. Journal of Geophysical Research, 2010, 115, .	3.3	58
62	Non-volatile residuals of newly formed atmospheric particles in the boreal forest. Atmospheric Chemistry and Physics, 2007, 7, 677-684.	1.9	57
63	Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2–9 nm particles in boreal forest. Atmospheric Chemistry and Physics, 2009, 9, 3317-3330.	1.9	56
64	Biogenic and biomass burning organic aerosol in a boreal forest at HyytiÃÃÞFinland, during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2013, 13, 12233-12256.	1.9	53
65	Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems. Atmospheric Measurement Techniques, 2011, 4, 485-497.	1.2	52
66	Degradation of nanoplastics in the environment: Reactivity and impact on atmospheric and surface waters. Science of the Total Environment, 2020, 742, 140413.	3.9	51
67	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	1.9	50
68	Characterisation of corona-generated ions used in a Neutral cluster and Air Ion Spectrometer (NAIS). Atmospheric Measurement Techniques, 2011, 4, 2767-2776.	1.2	47
69	Molecular mechanism for rapid autoxidation in \hat{l}_{\pm} -pinene ozonolysis. Nature Communications, 2021, 12, 878.	5.8	47
70	Terpenes and their oxidation products in the French Landes forest: insights from Vocus PTR-TOF measurements. Atmospheric Chemistry and Physics, 2020, 20, 1941-1959.	1.9	46
71	Long-term volatility measurements of submicron atmospheric aerosol in HyytiÃѬ҈¤Finland. Atmospheric Chemistry and Physics, 2012, 12, 10771-10786.	1.9	45
72	New insights into nocturnal nucleation. Atmospheric Chemistry and Physics, 2012, 12, 4297-4312.	1.9	45

#	Article	IF	CITATIONS
73	Direct measurement of NO ₃ radical reactivity in a boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 3799-3815.	1.9	45
74	Experimental investigation into the volatilities of highly oxygenated organic molecules (HOMs). Atmospheric Chemistry and Physics, 2020, 20, 649-669.	1.9	45
75	On the representativeness of coastal aerosol studies to open ocean studies: Mace Head – a case study. Atmospheric Chemistry and Physics, 2009, 9, 9635-9646.	1.9	44
76	Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. Journal of Geophysical Research, 2012, 117, .	3.3	44
77	Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MS ⁿ) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study. Atmospheric Measurement Techniques, 2013, 6, 431-443.	1.2	44
78	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	2.4	44
79	Observations of Nano-CN in the Nocturnal Boreal Forest. Aerosol Science and Technology, 2011, 45, 499-509.	1.5	43
80	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	1.5	43
81	Highly Oxygenated Molecules from Atmospheric Autoxidation of Hydrocarbons: A Prominent Challenge for Chemical Kinetics Studies. International Journal of Chemical Kinetics, 2017, 49, 821-831.	1.0	43
82	How well can we predict cluster fragmentation inside a mass spectrometer?. Chemical Communications, 2019, 55, 5946-5949.	2.2	43
83	Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis. Atmospheric Chemistry and Physics, 2019, 19, 7609-7625.	1.9	41
84	European aerosol phenomenology â^ 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.	4.8	41
85	Significance of the organic aerosol driven climate feedback in the boreal area. Nature Communications, 2021, 12, 5637.	5.8	38
86	Growth rates during coastal and marine new particle formation in western Ireland. Journal of Geophysical Research, 2010, 115, .	3.3	36
87	Chemical transformations in monoterpene-derived organic aerosol enhanced by inorganic composition. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	36
88	Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 45-53.	1.9	36
89	Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.	1.9	34
90	Primary Formation of Highly Oxidized Multifunctional Products in the OH-Initiated Oxidation of Isoprene: A Combined Theoretical and Experimental Study. Environmental Science & Eamp; Technology, 2018, 52, 12255-12264.	4.6	33

#	Article	IF	Citations
91	The role of H ₂ SO ₄ -NH <sub&al 13231-13243.<="" 18,="" 2018,="" aerosol="" and="" anion="" atmospheric="" boreal="" chemistry="" clusters="" forest.="" in="" ion-induced="" mechanisms="" nucleation="" physics,="" td="" the=""><td>mp;gt;3&a</td><td>amp;lt;/sub®</td></sub&al>	mp;gt;3&a	amp;lt;/sub®
92	Efficient alkane oxidation under combustion engine and atmospheric conditions. Communications Chemistry, 2021, 4, .	2.0	33
93	Evidence for Diverse Biogeochemical Drivers of Boreal Forest New Particle Formation. Geophysical Research Letters, 2018, 45, 2038-2046.	1.5	31
94	lodine dioxide nucleation simulations in coastal and remote marine environments. Journal of Geophysical Research, 2009, 114 , .	3.3	29
95	Solar eclipse demonstrating the importance of photochemistry in new particle formation. Scientific Reports, 2017, 7, 45707.	1.6	29
96	Modeling the role of highly oxidized multifunctional organicÂmolecules for the growth of new particles overÂtheÂborealÂforestÂregion. Atmospheric Chemistry and Physics, 2017, 17, 8887-8901.	1.9	29
97	Modelling studies of HOMs and their contributions to new particle formation and growth: comparison of boreal forest in Finland and a polluted environment in China. Atmospheric Chemistry and Physics, 2018, 18, 11779-11791.	1.9	29
98	In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 10933-10950.	1.9	28
99	Alkyl nitrates in the boreal forest: formation via the NO ₃ -, OH-and O ₃ -induced oxidation of biogenic volatile organic compounds and ambient lifetimes. Atmospheric Chemistry and Physics, 2019, 19, 10391-10403.	1.9	28
100	Structures and reactivity of peroxy radicals and dimeric products revealed by online tandem mass spectrometry. Nature Communications, 2021, 12, 300.	5.8	28
101	Long-term sub-micrometer aerosol chemical composition in the boreal forest: inter- and intra-annual variability. Atmospheric Chemistry and Physics, 2020, 20, 3151-3180.	1.9	26
102	Formation of condensable organic vapors from anthropogenic and biogenic volatile organic compounds (VOCs) is strongly perturbed by NO _{<i>x</i>} in eastern China. Atmospheric Chemistry and Physics, 2021, 21, 14789-14814.	1.9	26
103	Chemical Characterization of Gas- and Particle-Phase Products from the Ozonolysis of α-Pinene in the Presence of Dimethylamine. Environmental Science & Environmental Science & 2017, 51, 5602-5610.	4.6	25
104	Cl-Orbitrap: An Analytical Instrument To Study Atmospheric Reactive Organic Species. Analytical Chemistry, 2019, 91, 9419-9423.	3.2	25
105	Influence of biogenic emissions from boreal forests on aerosol–cloud interactions. Nature Geoscience, 2022, 15, 42-47.	5.4	25
106	A novel approach for simple statistical analysis of high-resolution mass spectra. Atmospheric Measurement Techniques, 2019, 12, 3761-3776.	1.2	24
107	Resolving anthropogenic aerosol pollution types – deconvolution and exploratory classification of pollution events. Atmospheric Chemistry and Physics, 2017, 17, 3165-3197.	1.9	23
108	Atmospheric organic vapors in two European pine forests measured by a Vocus PTR-TOF: insights into monoterpene and sesquiterpene oxidation processes. Atmospheric Chemistry and Physics, 2021, 21, 4123-4147.	1.9	23

#	Article	IF	CITATIONS
109	A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe. Atmospheric Environment: X, 2021, 10, 100108.	0.8	23
110	Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.	1.9	21
111	The Aarhus Chamber Campaign on Highly Oxygenated Organic Molecules and Aerosols (ACCHA): particle formation, organic acids, and dimer esters from & Departicle formation, organic acids, and dimer esters from & Departicle formation, organic acids, and dimer esters from & Departicle formation, organic acids, and dimer esters from & Departicle formation for the Alexandra formation for the Aarhus Chamber of C	1.9	21
112	Characterization of organic compounds in 10- to 50-nm aerosol particles in boreal forest with laser desorption-ionization aerosol mass spectrometer and comparison with other techniques. Atmospheric Environment, 2011, 45, 3711-3719.	1.9	20
113	Formation of highly oxygenated organic molecules from chlorine-atom-initiated oxidation of alpha-pinene. Atmospheric Chemistry and Physics, 2020, 20, 5145-5155.	1.9	20
114	Modelling the contribution of biogenic volatile organic compounds to new particle formation in the J \tilde{A}^{1} 4lich plant atmosphere chamber. Atmospheric Chemistry and Physics, 2015, 15, 10777-10798.	1.9	19
115	Pyruvic acid in the boreal forest: gas-phase mixing ratios and impact on radical chemistry. Atmospheric Chemistry and Physics, 2020, 20, 3697-3711.	1.9	19
116	Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment. Atmospheric Chemistry and Physics, 2015, 15, 11999-12009.	1.9	18
117	Elemental composition and clustering behaviour of \hat{l}_{\pm} -pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.	1.9	17
118	Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods. Atmospheric Chemistry and Physics, 2018, 18, 17705-17716.	1.9	17
119	Chemical characterisation of benzene oxidation products under high- and low-NO _{<i>x</i>} conditions using chemical ionisation mass spectrometry. Atmospheric Chemistry and Physics, 2021, 21, 3473-3490.	1.9	16
120	Gas-to-Particle Partitioning of Cyclohexene- and \hat{l}_{\pm} -Pinene-Derived Highly Oxygenated Dimers Evaluated Using COSMO <i>therm</i> . Journal of Physical Chemistry A, 2021, 125, 3726-3738.	1.1	16
121	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Eamp; Technology, 2022, 56, 770-778.	4.6	16
122	Estimates of the organic aerosol volatility in a boreal forest using two independent methods. Atmospheric Chemistry and Physics, 2017, 17, 4387-4399.	1.9	14
123	Eight years of sub-micrometre organic aerosol composition data from the boreal forest characterized using a machine-learning approach. Atmospheric Chemistry and Physics, 2021, 21, 10081-10109.	1.9	14
124	Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides. Atmospheric Measurement Techniques, 2022, 15, 1811-1827.	1.2	14
125	Constructing a data-driven receptor model for organic and inorganic aerosol – a synthesis analysis of eight mass spectrometric data sets from a boreal forest site. Atmospheric Chemistry and Physics, 2019, 19, 3645-3672.	1.9	13
126	Real-Time Detection of Arsenic Cations from Ambient Air in Boreal Forest and Lake Environments. Environmental Science and Technology Letters, 2016, 3, 42-46.	3.9	12

#	Article	IF	CITATIONS
127	Insights into atmospheric oxidation processes by performing factor analyses on subranges of mass spectra. Atmospheric Chemistry and Physics, 2020, 20, 5945-5961.	1.9	11
128	A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations. Atmospheric Chemistry and Physics, 2016, 16, 1955-1970.	1.9	9
129	Zeppelin-led study on the onset of new particle formation in the planetary boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 12649-12663.	1.9	9
130	VH-TDMA: A description and verification of an instrument to measure aerosol particle hygroscopicity and volatility. Aerosol Science and Technology, 2017, 51, 97-107.	1.5	8
131	Terpene emissions from boreal wetlands can initiate stronger atmospheric new particle formation than boreal forests. Communications Earth & Environment, 2022, 3, .	2.6	8
132	Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 2017, 17, 3659-3672.	1.9	7
133	Long-term observations of the background aerosol at Cabauw, The Netherlands. Science of the Total Environment, 2018, 625, 752-761.	3.9	6
134	Orbitool: a software tool for analyzing online Orbitrap mass spectrometry data. Atmospheric Measurement Techniques, 2021, 14, 2377-2387.	1.2	6
135	Modelling the influence of biotic plant stress on atmospheric aerosol particle processes throughout a growing season. Atmospheric Chemistry and Physics, 2021, 21, 17389-17431.	1.9	6
136	Correction to "Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles― Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	5
137	Measurement report: Effects of NO _{<i>x</i>} and seed aerosol on highly oxygenated organic molecules (HOMs) from cyclohexene ozonolysis. Atmospheric Chemistry and Physics, 2021, 21, 7357-7372.	1.9	5
138	Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere. Atmospheric Chemistry and Physics, 2022, 22, 8547-8577.	1.9	5
139	Corrigendum to & Dorth East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview& Dorth East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview& Dorth published in Atmos. Chem. Phys., 10, 8413-8435, 2010. Atmospheric Chemistry and Physics, 2010, 10, 8549-8549.	1.9	2
140	Oxidation product characterization from ozonolysis of the diterpene & amp; lt; i& amp; gt; ent & amp; lt; /i& amp; gt; -kaurene. Atmospheric Chemistry and Physics, 2022, 22, 5619-5637.	1.9	2
141	Does the onset of new particle formation occur in the planetary boundary layer?. , 2013, , .		1
142	Temperature and volatile organic compound concentrations as controlling factors for chemical composition of & amp;lt;i& amp;gt; \hat{l} & amp;lt;/i& amp;gt;-pinene-derived secondary organic aerosol. Atmospheric Chemistry and Physics, 2021, 21, 11545-11562.	1.9	1
143	Measuring composition and growth of ion clusters of sulfuric acid, ammonia, amines and oxidized organics as first steps of nucleation in the CLOUD experiment. , 2013, , .		0
144	Probing aerosol formation by comprehensive measurements of gas phase oxidation products. , 2013, , .		O

#	Article	lF	CITATIONS
145	Evolution of $\hat{l}\pm$ -pinene oxidation products in the presence of varying oxidizers: Negative APi-TOF point of view. , 2013, , .		O