
Kasper Eersels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2497199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reviewing the use of chitosan and polydopamine for electrochemical sensing. Current Opinion in Electrochemistry, 2022, 32, 100885.	4.8	6
2	Polyphosphate-Based Hydrogels as Drug-Loaded Wound Dressing: An <i>In Vitro</i> Study. ACS Applied Polymer Materials, 2022, 4, 2871-2879.	4.4	13
3	Imprinted Polydimethylsiloxane-Graphene Oxide Composite Receptor for the Biomimetic Thermal Sensing of <i>Escherichia coli</i> . ACS Sensors, 2022, 7, 1467-1475.	7.8	8
4	Modular Science Kit as a support platform for STEM learning in primary and secondary school. Journal of Chemical Education, 2021, 98, 439-444.	2.3	6
5	Imprinted Polymers as Synthetic Receptors in Sensors for Food Safety. Biosensors, 2021, 11, 46.	4.7	17
6	MIP-Based Dye Displacement Assay for the Colorimetric Detection of Illicit Substances. ECS Meeting Abstracts, 2021, MA2021-01, 1640-1640.	0.0	0
7	Combined Thermal and Electrochemical Sensor Platform Employing a Novel Surface-Imprinted Polymer As Receptor for the Real Time Detection of Escherichia coli. ECS Meeting Abstracts, 2021, MA2021-01, 1415-1415.	0.0	0
8	(Invited) Chemical Sensors Based on Thermal Resistance Analysis at Solid-Liquid Interfaces – Applications and Challenges. ECS Meeting Abstracts, 2021, MA2021-01, 1679-1679.	0.0	0
9	Glucose Detection Using Molecularly Imprinted Mesoporous Organosilica. ECS Meeting Abstracts, 2021, MA2021-01, 1656-1656.	0.0	0
10	Colorimetric Sensing of Amoxicillin Facilitated by Molecularly Imprinted Polymers. Polymers, 2021, 13, 2221.	4.5	15
11	Identifying Potential Machine Learning Algorithms for the Simulation of Binding Affinities to Molecularly Imprinted Polymers. Computation, 2021, 9, 103.	2.0	6
12	Biomimetic sensing of Escherichia coli at the solid-liquid interface: From surface-imprinted polymer synthesis toward real sample sensing in food safety. Microchemical Journal, 2021, 169, 106554.	4.5	25
13	Topographical Vacuum Sealing of 3D-Printed Multiplanar Microfluidic Structures. Biosensors, 2021, 11, 395.	4.7	4
14	Thermal Detection of Glucose in Urine Using a Molecularly Imprinted Polymer as a Recognition Element. ACS Sensors, 2021, 6, 4515-4525.	7.8	26
15	Point of Care Diagnostics in Resource-Limited Settings: A Review of the Present and Future of PoC in Its Most Needed Environment. Biosensors, 2020, 10, 133.	4.7	57
16	MIPs for commercial application in low-cost sensors and assays – An overview of the current status quo. Sensors and Actuators B: Chemical, 2020, 325, 128973.	7.8	130
17	A Molecularly Imprinted Polymer-based Dye Displacement Assay for the Rapid Visual Detection of Amphetamine in Urine. Molecules, 2020, 25, 5222.	3.8	14
18	Rapid Colorimetric Screening of Elevated Phosphate in Urine: A Charge-Transfer Interaction. ACS Omega, 2020, 5, 21054-21066.	3.5	6

KASPER EERSELS

#	Article	IF	CITATIONS
19	The Liberalization of Microfluidics: Form 2 Benchtop 3D Printing as an Affordable Alternative to Established Manufacturing Methods. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900935.	1.8	15
20	Thermistors coated with molecularly imprinted nanoparticles for the electrical detection of peptides and proteins. Analyst, The, 2020, 145, 5419-5424.	3.5	9
21	Surface grafted molecularly imprinted polymeric receptor layers for thermal detection of the New Psychoactive substance 2-methoxphenidine. Sensors and Actuators A: Physical, 2019, 295, 586-595.	4.1	24
22	Thermal Detection of Cardiac Biomarkers Heart-Fatty Acid Binding Protein and ST2 Using a Molecularly Imprinted Nanoparticle-Based Multiplex Sensor Platform. ACS Sensors, 2019, 4, 2838-2845.	7.8	50
23	Studying the Effect of Adhesive Layer Composition on MIPâ€Based Thermal Biosensing. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800941.	1.8	5
24	Biomimetic Bacterial Identification Platform Based on Thermal Transport Analysis Through Surface Imprinted Polymers: From Proof of Principle to Proof of Application. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800688.	1.8	5
25	Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. Sensors, 2019, 19, 1204.	3.8	154
26	Substrate displacement colorimetry for the detection of diarylethylamines. Sensors and Actuators B: Chemical, 2019, 282, 137-144.	7.8	19
27	Cell detection by surface imprinted polymers SIPs: A study to unravel the recognition mechanisms. Sensors and Actuators B: Chemical, 2018, 255, 907-917.	7.8	41
28	Development of a Flexible MIP-Based Biosensor Platform for the Thermal Detection of Neurotransmitters. MRS Advances, 2018, 3, 1569-1574.	0.9	5
29	A novel thermal detection method based on molecularly imprinted nanoparticles as recognition elements. Nanoscale, 2018, 10, 2081-2089.	5.6	53
30	SIPâ€Based Thermal Detection Platform for the Direct Detection of Bacteria Obtained from a Contaminated Surface. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700777.	1.8	3
31	Real-time analysis of microbial growth by means of the Heat-Transfer Method (HTM) using Saccharomyces cerevisiae as model organism. Physics in Medicine, 2018, 6, 1-8.	1.3	14
32	A Novel Biomimetic Tool for Assessing Vitamin K Status Based on Molecularly Imprinted Polymers. Nutrients, 2018, 10, 751.	4.1	15
33	Optimization and characterization of a flow cell for heat-transfer-based biosensing. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600758.	1.8	8
34	Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sensors and Actuators B: Chemical, 2017, 246, 461-470.	7.8	65
35	Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers. ACS Infectious Diseases, 2017, 3, 388-397.	3.8	33
36	Label-Free Detection of Small Organic Molecules by Molecularly Imprinted Polymer Functionalized Thermocouples: Toward In Vivo Applications. ACS Sensors, 2017, 2, 583-589.	7.8	31

KASPER EERSELS

#	Article	IF	CITATIONS
37	Anisotropic InÂSitu-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor. Journal of Electronic Materials, 2017, 46, 3542-3552.	2.2	16
38	Heat Transfer as a New Sensing Technique for the Label-Free Detection of Biomolecules. Springer Series on Chemical Sensors and Biosensors, 2017, , 383-407.	0.5	1
39	Studying the Drug Delivery Kinetics of a Nanoporous Matrix Using a MIP-Based Thermal Sensing Platform. Polymers, 2017, 9, 560.	4.5	4
40	Single-Shot Detection of Neurotransmitters in Whole-Blood Samples by Means of the Heat-Transfer Method in Combination with Synthetic Receptors. Sensors, 2017, 17, 2701.	3.8	16
41	Molecularly Imprinted Polymers. , 2016, , 253-271.		2
42	Label-Free Detection of <i>Escherichia coli</i> Based on Thermal Transport through Surface Imprinted Polymers. ACS Sensors, 2016, 1, 1140-1147.	7.8	64
43	A Review on Synthetic Receptors for Bioparticle Detection Created by Surface-Imprinting Techniques—From Principles to Applications. ACS Sensors, 2016, 1, 1171-1187.	7.8	99
44	Heat-Transfer-Method-Based Cell Culture Quality Assay through Cell Detection by Surface Imprinted Polymers. Langmuir, 2015, 31, 2043-2050.	3.5	29
45	Improving the sensitivity of the heatâ€transfer method (HTM) for cancer cell detection with optimized sensor chips. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1320-1326.	1.8	13
46	Heat transfer resistance as a tool to quantify hybridization efficiency of DNA on a nanocrystalline diamond surface. Diamond and Related Materials, 2014, 48, 32-36.	3.9	8
47	The Heat-Transfer Method: A Versatile Low-Cost, Label-Free, Fast, and User-Friendly Readout Platform for Biosensor Applications. ACS Applied Materials & Interfaces, 2014, 6, 13309-13318.	8.0	59
48	Heat-Transfer Resistance Measurement Method (HTM)-Based Cell Detection at Trace Levels Using a Progressive Enrichment Approach with Highly Selective Cell-Binding Surface Imprints. Langmuir, 2014, 30, 3631-3639.	3.5	26
49	Selective Identification of Macrophages and Cancer Cells Based on Thermal Transport through Surface-Imprinted Polymer Layers. ACS Applied Materials & Interfaces, 2013, 5, 7258-7267.	8.0	69
50	Surface plasmon resonanceâ€based <scp>DNA</scp> microarrays: Comparison of thiol and phosphorothioate modified oligonucleotides. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 918-925.	1.8	3
51	Electronic monitoring of chemical <scp>DNA</scp> denaturation on nanocrystalline diamond electrodes with different molarities and flow rates. Physica Status Solidi (A) Applications and Materials Science. 2013. 210. 911-917.	1.8	3