
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2497026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Store-Operated Ca2+ Entry in Skeletal Muscle Contributes to the Increase in Body Temperature during Exertional Stress. International Journal of Molecular Sciences, 2022, 23, 3772.	1.8	3
2	High-Fat Diet Impairs Muscle Function and Increases the Risk of Environmental Heatstroke in Mice. International Journal of Molecular Sciences, 2022, 23, 5286.	1.8	2
3	Calcium entry units (CEUs): perspectives in skeletal muscle function and disease. Journal of Muscle Research and Cell Motility, 2021, 42, 233-249.	0.9	28
4	Parvalbumin affects skeletal muscle trophism through modulation of mitochondrial calcium uptake. Cell Reports, 2021, 35, 109087.	2.9	16
5	Altered Ca2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites, 2021, 11, 424.	1.3	27
6	Improper Remodeling of Organelles Deputed to Ca2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. International Journal of Molecular Sciences, 2021, 22, 6195.	1.8	11
7	Impaired Binding to Junctophilin-2 and Nanostructural Alteration in CPVT Mutation. Circulation Research, 2021, 129, e35-e52.	2.0	19
8	Ageing Causes Ultrastructural Modification to Calcium Release Units and Mitochondria in Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 8364.	1.8	4
9	Proteomic Analysis of Marinesco–Sjogren Syndrome Fibroblasts Indicates Pro-Survival Metabolic Adaptation to SIL1 Loss. International Journal of Molecular Sciences, 2021, 22, 12449.	1.8	6
10	Calsequestrin Deletion Facilitates Hippocampal Synaptic Plasticity and Spatial Learning in Post-Natal Development. International Journal of Molecular Sciences, 2020, 21, 5473.	1.8	3
11	Long-Term Exercise Reduces Formation of Tubular Aggregates and Promotes Maintenance of Ca2+ Entry Units in Aged Muscle. Frontiers in Physiology, 2020, 11, 601057.	1.3	21
12	Pre-assembled Ca2+ entry units and constitutively active Ca2+ entry in skeletal muscle of calsequestrin-1 knockout mice. Journal of General Physiology, 2020, 152, .	0.9	32
13	Excessive Accumulation of Ca2 + in Mitochondria of Y522S-RYR1 Knock-in Mice: A Link Between Leak From the Sarcoplasmic Reticulum and Altered Redox State. Frontiers in Physiology, 2019, 10, 1142.	1.3	14
14	DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature Communications, 2019, 10, 2576.	5.8	274
15	Functional Electrical Stimulation: A Possible Strategy to Improve Muscle Function in Central Core Disease?. Frontiers in Neurology, 2019, 10, 479.	1.1	2
16	Muscle activity prevents the uncoupling of mitochondria from Ca2+ Release Units induced by ageing and disuse. Archives of Biochemistry and Biophysics, 2019, 663, 22-33.	1.4	26
17	Transverse tubule remodeling enhances Orai1-dependent Ca2+ entry in skeletal muscle. ELife, 2019, 8, .	2.8	36
18	Mechanical parameters of the molecular motor myosin II determined in permeabilised fibres from slow and fast skeletal muscles of the rabbit. Journal of Physiology, 2018, 596, 1243-1257.	1.3	29

#	Article	IF	CITATIONS
19	Aerobic Training Prevents Heatstrokes in Calsequestrin-1 Knockout Mice by Reducing Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-14.	1.9	8
20	A 3D diffusional-compartmental model of the calcium dynamics in cytosol, sarcoplasmic reticulum and mitochondria of murine skeletal muscle fibers. PLoS ONE, 2018, 13, e0201050.	1.1	23
21	PERK inhibition attenuates the abnormalities of the secretory pathway and the increased apoptotic rate induced by SIL1 knockdown in HeLa cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3164-3180.	1.8	7
22	Strenuous exercise triggers a lifeâ€ŧhreatening response in mice susceptible to malignant hyperthermia. FASEB Journal, 2017, 31, 3649-3662.	0.2	34
23	Allele-Specific Silencing of Mutant mRNA Rescues Ultrastructural and Arrhythmic Phenotype in Mice Carriers of the R4496C Mutation in the Ryanodine Receptor Gene (<i>RYR2</i>). Circulation Research, 2017, 121, 525-536.	2.0	64
24	Exercise-dependent formation of new junctions that promote STIM1-Orai1 assembly in skeletal muscle. Scientific Reports, 2017, 7, 14286.	1.6	67
25	Antioxidant Treatment Reduces Formation of Structural Cores and Improves Muscle Function in RYR1 ^{Y522S/WT} Mice. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-15.	1.9	33
26	Estrogens Protect Calsequestrin-1 Knockout Mice from Lethal Hyperthermic Episodes by Reducing Oxidative Stress in Muscle. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-15.	1.9	17
27	Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics. Physiological Reports, 2016, 4, e13005.	0.7	71
28	Oxidative stress, mitochondrial damage, and cores in muscle from calsequestrin-1 knockout mice. Skeletal Muscle, 2015, 5, 10.	1.9	33
29	Antioxidants Protect Calsequestrin-1 Knockout Mice from Halothane- and Heat-induced Sudden Death. Anesthesiology, 2015, 123, 603-617.	1.3	35
30	Age-dependent uncoupling of mitochondria from Ca2+ release units in skeletal muscle. Oncotarget, 2015, 6, 35358-35371.	0.8	83
31	New method for determining total calcium content in tissue applied to skeletal muscle with and without calsequestrin. Journal of General Physiology, 2015, 145, 127-153.	0.9	14
32	A <i>CASQ1</i> founder mutation in three Italian families with protein aggregate myopathy and hyperCKaemia. Journal of Medical Genetics, 2015, 52, 617-626.	1.5	10
33	The Mitochondrial Calcium Uniporter Controls Skeletal Muscle Trophism InÂVivo. Cell Reports, 2015, 10, 1269-1279.	2.9	170
34	Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle. Cell Calcium, 2015, 57, 14-24.	1.1	104
35	Electrical Stimulation Counteracts Muscle Decline in Seniors. Frontiers in Aging Neuroscience, 2014, 6, 189.	1.7	128
36	Long-Term High-Level Exercise Promotes Muscle Reinnervation With Age. Journal of Neuropathology and Experimental Neurology, 2014, 73, 284-294.	0.9	136

#	Article	IF	CITATIONS
37	Post-natal heart adaptation in a knock-in mouse model of calsequestrin 2-linked recessive catecholaminergic polymorphic ventricular tachycardia. Experimental Cell Research, 2014, 321, 178-189.	1.2	12
38	A Mutation in the <i>CASQ1</i> Gene Causes a Vacuolar Myopathy with Accumulation of Sarcoplasmic Reticulum Protein Aggregates. Human Mutation, 2014, 35, 1163-1170.	1.1	53
39	Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nature Communications, 2013, 4, 2805.	5.8	118
40	Enhanced dihydropyridine receptor calcium channel activity restores muscle strength in JP45/CASQ1 double knockout mice. Nature Communications, 2013, 4, 1541.	5.8	35
41	Abnormal Propagation of Calcium Waves and Ultrastructural Remodeling in Recessive Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation Research, 2013, 113, 142-152.	2.0	44
42	Accelerated Activation of SOCE Current in Myotubes from Two Mouse Models of Anesthetic- and Heat-Induced Sudden Death. PLoS ONE, 2013, 8, e77633.	1.1	36
43	Mitochondrial Ca2+-Handling in Fast Skeletal Muscle Fibers from Wild Type and Calsequestrin-Null Mice. PLoS ONE, 2013, 8, e74919.	1.1	25
44	Calsequestrin (CASQ1) rescues function and structure of calcium release units in skeletal muscles of CASQ1-null mice. American Journal of Physiology - Cell Physiology, 2012, 302, C575-C586.	2.1	28
45	Sequential stages in the age-dependent gradual formation and accumulation of tubular aggregates in fast twitch muscle fibers: SERCA and calsequestrin involvement. Age, 2012, 34, 27-41.	3.0	54
46	Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease. FASEB Journal, 2011, 25, 3068-3078.	0.2	90
47	Lessons from calsequestrin-1 ablation in vivo: much more than a Ca2+ buffer after all. Journal of Muscle Research and Cell Motility, 2011, 32, 257-270.	0.9	26
48	Differential impact of mitochondrial positioning on mitochondrial Ca ²⁺ uptake and Ca ²⁺ spark suppression in skeletal muscle. American Journal of Physiology - Cell Physiology, 2011, 301, C1128-C1139.	2.1	50
49	Differential Effect of Calsequestrin Ablation on Structure and Function of Fast and Slow Skeletal Muscle Fibers. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	30
50	Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle. Journal of General Physiology, 2010, 136, 325-338.	0.9	39
51	Anestheticâ€and heatâ€induced sudden death in calsequestrinâ€1â€knockout mice. FASEB Journal, 2009, 23, 1710-1720.	0.2	99
52	Mitochondria Are Linked to Calcium Stores in Striated Muscle by Developmentally Regulated Tethering Structures. Molecular Biology of the Cell, 2009, 20, 1058-1067.	0.9	240
53	Characterization and temporal development of cores in a mouse model of malignant hyperthermia. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21996-22001.	3.3	113
54	Calsequestrinâ€1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. Journal of Physiology, 2009, 587, 3095-3100.	1.3	95

#	Article	IF	CITATIONS
55	A Subpopulation of Rat Muscle Fibers Maintains an Assessable Excitation-Contraction Coupling Mechanism After Long-Standing Denervation Despite Lost Contractility. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1256-1268.	0.9	45
56	RyR1 S-Nitrosylation Underlies Environmental Heat Stroke and Sudden Death in Y522S RyR1 Knockin Mice. Cell, 2008, 133, 53-65.	13.5	321
57	Atrophy-resistant fibers in permanent peripheral denervation of human skeletal muscle. Neurological Research, 2008, 30, 137-144.	0.6	34
58	Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19339-19344.	3.3	153
59	Increased Ca2+ storage capacity of the skeletal muscle sarcoplasmic reticulum of transgenic mice over-expressing membrane bound calcium binding protein junctate. Journal of Cellular Physiology, 2007, 213, 464-474.	2.0	23
60	Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrinâ€1. Journal of Physiology, 2007, 583, 767-784.	1.3	130
61	Effects of chronic electrical stimulation on long-term denervated muscles of the rabbit hind limb. Journal of Muscle Research and Cell Motility, 2007, 28, 203-217.	0.9	47
62	Progressive Disorganization of the Excitation-Contraction Coupling Apparatus in Aging Human Skeletal Muscle as Revealed by Electron Microscopy: A Possible Role in the Decline of Muscle Performance. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 995-1008.	1.7	82
63	The Assembly of Calcium Release Units in Cardiac Muscle. Annals of the New York Academy of Sciences, 2005, 1047, 76-85.	1.8	112
64	Electrical Stimulation of Denervated Muscles: First Results of a Clinical Study. Artificial Organs, 2005, 29, 203-206.	1.0	93
65	All three ryanodine receptor isoforms generate rapid cooling responses in muscle cells. American Journal of Physiology - Cell Physiology, 2004, 286, C662-C670.	2.1	17
66	The contribution of reactive oxygen species to sarcopenia and muscle ageing. Experimental Gerontology, 2004, 39, 17-24.	1.2	345
67	The Relative Position of RyR Feet and DHPR Tetrads in Skeletal Muscle. Journal of Molecular Biology, 2004, 342, 145-153.	2.0	71
68	Long-Term Denervation in Humans Causes Degeneration of Both Contractile and Excitation-Contraction Coupling Apparatus, Which Is Reversible by Functional Electrical Stimulation (FES): A Role for Myofiber Regeneration?. Journal of Neuropathology and Experimental Neurology, 2004, 63, 919-931.	0.9	173
69	Multiple Regions of RyR1 Mediate Functional and Structural Interactions with α1S-Dihydropyridine Receptors in Skeletal Muscle. Biophysical Journal, 2002, 83, 3230-3244.	0.2	80
70	Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells. Frontiers in Bioscience - Landmark, 2002, 7, d650-658.	3.0	74
71	Expression of ryanodine receptor RyR3 produces Ca 2+ sparks in dyspedic myotubes. Journal of Physiology, 2000, 525, 91-103.	1.3	48
72	RYR1 and RYR3 Have Different Roles in the Assembly of Calcium Release Units of Skeletal Muscle. Biophysical Journal, 2000, 79, 2494-2508.	0.2	99

#	Article	IF	CITATIONS
73	Shape, Size, and Distribution of Ca2+ Release Units and Couplons in Skeletal and Cardiac Muscles. Biophysical Journal, 1999, 77, 1528-1539.	0.2	540
74	Comparative Ultrastructure of Ca2+ Release Units in Skeletal and Cardiac Muscle. Annals of the New York Academy of Sciences, 1998, 853, 20-30.	1.8	129
75	Contractile impairment and structural alterations of skeletal muscles from knockout mice lacking type 1 and type 3 ryanodine receptors. FEBS Letters, 1998, 422, 160-164.	1.3	39
76	Role of Ryanodine Receptors in the Assembly of Calcium Release Units in Skeletal Muscle. Journal of Cell Biology, 1998, 140, 831-842.	2.3	134
77	Coordinated Incorporation of Skeletal Muscle Dihydropyridine Receptors and Ryanodine Receptors in Peripheral Couplings of BC3H1 Cells. Journal of Cell Biology, 1997, 137, 859-870.	2.3	84
78	Formation and Maturation of the Calcium Release Apparatus in Developing and Adult Avian Myocardium. Developmental Biology, 1996, 173, 265-278.	0.9	80