
John H Offenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2496846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytotoxicity and oxidative stress induced by atmospheric mono-nitrophenols in human lung cells. Environmental Pollution, 2022, 301, 119010.	7.5	6
2	Relative contributions of selected multigeneration products to chamber SOA formed from photooxidation of a range (C10–C17) of n-alkanes under high NO conditions. Atmospheric Environment, 2021, 244, 117976.	4.1	6
3	Data mining approaches to understanding the formation of secondary organic aerosol. Atmospheric Environment, 2021, 252, 118345.	4.1	0
4	Quantifying wintertime O3 and NOx formation with relevance vector machines. Atmospheric Environment, 2021, 259, 118538.	4.1	5
5	Quantifying wintertime O and NO formation with relevance vector machines. Atmospheric Environment, 2021, 259, 1-118538.	4.1	0
6	Secondary organic aerosols from aromatic hydrocarbons and their contribution to fine particulate matter in Atlanta, Georgia. Atmospheric Environment, 2020, 223, 117227.	4.1	34
7	Time series analysis of wintertime O3 and NOx formation using vector autoregressions. Atmospheric Environment, 2019, 218, 116988.	4.1	9
8	Gas-Phase Detection of Fluorotelomer Alcohols and Other Oxygenated Per- and Polyfluoroalkyl Substances by Chemical Ionization Mass Spectrometry. Environmental Science and Technology Letters, 2019, 6, 289-293.	8.7	25
9	Light absorption of organic carbon and its sources at a southeastern U.S. location in summer. Environmental Pollution, 2019, 244, 38-46.	7.5	48
10	Photochemical Conversion of Surrogate Emissions for Use in Toxicological Studies: Role of Particulate- and Gas-Phase Products. Environmental Science & Technology, 2018, 52, 3037-3044.	10.0	6
11	Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2038-2043.	7.1	186
12	Mutagenic atmospheres resulting from the photooxidation of aromatic hydrocarbon and NOx mixtures. Atmospheric Environment, 2018, 178, 164-172.	4.1	16
13	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	53
14	Characterization of aerosol nitroaromatic compounds: Validation of an experimental method. Journal of Mass Spectrometry, 2018, 53, 680-692.	1.6	8
15	Trends in the oxidation and relative volatility of chamber-generated secondary organic aerosol. Aerosol Science and Technology, 2018, 52, 992-1004.	3.1	16
16	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	22
17	Ozonolysis of α/β-farnesene mixture: Analysis of gas-phase and particulate reaction products. Atmospheric Environment, 2017, 169, 175-192.	4.1	8
18	Light Absorption of Secondary Organic Aerosol: Composition and Contribution of Nitroaromatic Compounds. Environmental Science & amp; Technology, 2017, 51, 11607-11616.	10.0	132

#	Article	IF	CITATIONS
19	Predicting Thermal Behavior of Secondary Organic Aerosols. Environmental Science & Technology, 2017, 51, 9911-9919.	10.0	12
20	A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1. Geoscientific Model Development, 2017, 10, 1587-1605.	3.6	50
21	Constraints on primary and secondary particulate carbon sources using chemical tracer and 14 C methods during CalNex-Bakersfield. Atmospheric Environment, 2017, 166, 204-214.	4.1	5
22	Photooxidation of farnesene mixtures in the presence of NOx: Analysis of reaction products and their implication to ambient PM2.5. Atmospheric Environment, 2016, 130, 190-201.	4.1	12
23	Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM _{2.5} collected from the Birmingham, Alabama, ground site during the 2013 Southern OxidantÂand Aerosol Study. Atmospheric Chemistry and Physics, 2016. 16. 4897-4914.	4.9	105
24	Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Atmospheric Chemistry and Physics, 2015, 15, 5773-5801.	4.9	139
25	Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol. Atmospheric Chemistry and Physics, 2015, 15, 3773-3783.	4.9	34
26	Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield. Atmospheric Chemistry and Physics, 2015, 15, 5243-5258.	4.9	48
27	Qualitative and quantitative assessment of unresolved complex mixture in PM2.5 of Bakersfield, CA. Atmospheric Environment, 2014, 98, 368-375.	4.1	6
28	2-Hydroxyterpenylic Acid: An Oxygenated Marker Compound for α-Pinene Secondary Organic Aerosol in Ambient Fine Aerosol. Environmental Science & Technology, 2014, 48, 4901-4908.	10.0	32
29	Atmospheric oxidation of 1,3-butadiene: characterization of gas and aerosol reaction products and implications for PM _{2.5} . Atmospheric Chemistry and Physics, 2014, 14, 13681-13704.	4.9	21
30	Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013. Atmospheric Chemistry and Physics, 2014, 14, 6345-6367.	4.9	62
31	Constraining carbonaceous aerosol sources in a receptor model by including 14C data with redox species, organic tracers, and elemental/organic carbon measurements. Atmospheric Environment, 2013, 80, 216-225.	4.1	11
32	Epoxide Pathways Improve Model Predictions of Isoprene Markers and Reveal Key Role of Acidity in Aerosol Formation. Environmental Science & amp; Technology, 2013, 47, 11056-11064.	10.0	222
33	Secondary organic aerosol formation from the oxidation of a series of sesquiterpenes: α-cedrene, β-caryophyllene, α-humulene and α-farnesene with O3, OH and NO3 radicals. Environmental Chemistry, 2013, 10, 178.	1.5	75
34	Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols. Aerosol Science and Technology, 2013, 47, 294-309.	3.1	50
35	Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6783-6796.	3.3	69
36	Secondary organic aerosol characterisation at field sites across the United States during the spring–summer period. International Journal of Environmental Analytical Chemistry, 2013, 93, 1084-1103.	3.3	59

#	Article	IF	CITATIONS
37	Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9233-9257.	3.3	231
38	SOA formation from the atmospheric oxidation of 2-methyl-3-buten-2-ol and its implications for PM _{2.5} . Atmospheric Chemistry and Physics, 2012, 12, 2173-2188.	4.9	39
39	The formation of SOA and chemical tracer compounds from the photooxidation of naphthalene and its methyl analogs in the presence and absence of nitrogen oxides. Atmospheric Chemistry and Physics, 2012, 12, 8711-8726.	4.9	123
40	Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere. Environmental Science & Technology, 2012, 46, 9437-9446.	10.0	128
41	Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield. Journal of Geophysical Research, 2012, 117, .	3.3	72
42	Ultrahigh-resolution FT-ICR mass spectrometry characterization of α-pinene ozonolysis SOA. Atmospheric Environment, 2012, 46, 164-172.	4.1	80
43	Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene. Atmospheric Chemistry and Physics, 2011, 11, 1735-1751.	4.9	139
44	Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites. Atmospheric Chemistry and Physics, 2011, 11, 13339-13357.	4.9	99
45	Contributions of Biogenic and Anthropogenic Hydrocarbons to Secondary Organic Aerosol during 2006 in Research Triangle Park, NC. Aerosol and Air Quality Research, 2011, 11, 99-108.	2.1	50
46	Formation of organic tracers for isoprene SOA under acidic conditions. Atmospheric Environment, 2010, 44, 1798-1805.	4.1	37
47	Contribution of Primary and Secondary Sources to Organic Aerosol and PM _{2.5} at SEARCH Network Sites. Journal of the Air and Waste Management Association, 2010, 60, 1388-1399.	1.9	70
48	Source apportionment of primary and secondary organic aerosols using positive matrix factorization (PMF) of molecular markers. Atmospheric Environment, 2009, 43, 5567-5574.	4.1	97
49	Influence of Aerosol Acidity on the Formation of Secondary Organic Aerosol from Biogenic Precursor Hydrocarbons. Environmental Science & Technology, 2009, 43, 7742-7747.	10.0	83
50	The formation of secondary organic aerosol from the isoprene + OH reaction in the absence of NO _x . Atmospheric Chemistry and Physics, 2009, 9, 6541-6558.	4.9	111
51	Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(â^) electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2008, 43, 371-382.	1.6	222
52	Formation of secondary organic aerosol from irradiated <i>α</i> â€pinene/toluene/NO _{<i>x</i>} mixtures and the effect of isoprene and sulfur dioxide. Journal of Geophysical Research, 2008, 113, .	3.3	108
53	Primary and Secondary Contributions to Ambient PM in the Midwestern United States. Environmental Science & Technology, 2008, 42, 3303-3309.	10.0	140
54	Organosulfate Formation in Biogenic Secondary Organic Aerosol. Journal of Physical Chemistry A, 2008, 112, 8345-8378.	2.5	594

#	Article	IF	CITATIONS
55	Ozone-isoprene reaction: Re-examination of the formation of secondary organic aerosol. Geophysical Research Letters, 2007, 34, .	4.0	105
56	Investigation of a Systematic Offset in the Measurement of Organic Carbon with a Semicontinuous Analyzer. Journal of the Air and Waste Management Association, 2007, 57, 596-599.	1.9	13
57	Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene. Environmental Science & Technology, 2007, 41, 5363-5369.	10.0	457
58	Hydroxydicarboxylic Acids:Â Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene. Environmental Science & Technology, 2007, 41, 1628-1634.	10.0	226
59	Contributions of Toluene and α-Pinene to SOA Formed in an Irradiated Toluene/α-Pinene/NOx/ Air Mixture:Â Comparison of Results Using14C Content and SOA Organic Tracer Methods. Environmental Science & Technology, 2007, 41, 3972-3976.	10.0	75
60	Evidence for Organosulfates in Secondary Organic Aerosol. Environmental Science & Technology, 2007, 41, 517-527.	10.0	591
61	β-caryophyllinic acid: An atmospheric tracer forβ-caryophyllene secondary organic aerosol. Geophysical Research Letters, 2007, 34, .	4.0	145
62	3â€methylâ€1,2,3â€butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol. Geophysical Research Letters, 2007, 34, .	4.0	268
63	Composition of PM2.5 during the summer of 2003 in Research Triangle Park, North Carolina. Atmospheric Environment, 2007, 41, 4073-4083.	4.1	91
64	A functional group characterization of organic PM2.5 exposure: Results from the RIOPA study. Atmospheric Environment, 2007, 41, 4585-4598.	4.1	43
65	Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmospheric Environment, 2007, 41, 8288-8300.	4.1	459
66	Thermal properties of secondary organic aerosols. Geophysical Research Letters, 2006, 33, .	4.0	76
67	Secondary Organic Carbon and Aerosol Yields from the Irradiations of Isoprene and α-Pinene in the Presence of NOx and SO2. Environmental Science & Technology, 2006, 40, 3807-3812.	10.0	172
68	Analysis of Secondary Organic Aerosol Compounds from the Photooxidation of d-Limonene in the Presence of NOX and their Detection in Ambient PM2.5. Environmental Science & Technology, 2006, 40, 3819-3828.	10.0	91
69	Atmospheric dry deposition of trace elements measured around the urban and industrially impacted NY–NJ harbor. Atmospheric Environment, 2006, 40, 6626-6637.	4.1	26
70	Persistent Organic Pollutants in Dusts That Settled at Indoor and Outdoor Locations in Lower Manhattan after September 11, 2001. ACS Symposium Series, 2005, , 103-113.	0.5	0
71	Atmospheric concentrations and deposition of organochlorine pesticides in the US Mid-Atlantic region. Atmospheric Environment, 2005, 39, 2309-2322.	4.1	78
72	Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmospheric Environment, 2005, 39, 5281-5289.	4.1	399

#	Article	IF	CITATIONS
73	The impact of urban areas on the deposition of air toxics to adjacent surface waters: A mass budget of PCBs in Lake Michigan in 1994. Aquatic Sciences, 2005, 67, 79-85.	1.5	19
74	Polybrominated Diphenyl Ethers in House Dust and Clothes Dryer Lint. Environmental Science & Technology, 2005, 39, 925-931.	10.0	421
75	Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic or Hydroxyl Groups. 2. Organic Tracer Compounds from Monoterpenes. Environmental Science & Technology, 2005, 39, 5661-5673.	10.0	154
76	Atmospheric Concentrations and Deposition of Polycyclic Aromatic Hydrocarbons to the Mid-Atlantic East Coast Region. Environmental Science & Technology, 2005, 39, 5550-5559.	10.0	89
77	Persistent organic pollutants in dusts that settled indoors in lower Manhattan after September 11, 2001. Journal of Exposure Science and Environmental Epidemiology, 2004, 14, 164-172.	3.9	38
78	Ambient pollutant concentrations measured by a mobile laboratory in South Bronx, NY. Atmospheric Environment, 2004, 38, 5283-5294.	4.1	50
79	Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed. Atmospheric Environment, 2004, 38, 5971-5981.	4.1	100
80	Atmospheric Wet Deposition of Total Phosphorus in New Jersey. Water, Air, and Soil Pollution, 2004, 154, 139-150.	2.4	20
81	Chlordanes in the Mid-Atlantic Atmosphere:Â New Jersey 1997â^'1999. Environmental Science & Technology, 2004, 38, 3488-3497.	10.0	13
82	Atmospheric Concentrations and Deposition of Polychorinated Biphenyls to the Hudson River Estuary. Environmental Science & 2007, Technology, 2004, 38, 2568-2573.	10.0	70
83	Response to Comment on "Reevaluation of Air-Water Exchange Fluxes of PCBs in Green Bay and Southern Lake Michigan― Environmental Science & Technology, 2004, 38, 1629-1632.	10.0	15
84	Chlordanes in the Indoor and Outdoor Air of Three U.S. Cities. Environmental Science & Technology, 2004, 38, 2760-2768.	10.0	27
85	PARTICULATE AND GASEOUS POLLUTANT CONCENTRATIONS IN SOUTH BRONX, NY. Epidemiology, 2004, 15, S68-S69.	2.7	2
86	Gas/particle distribution of polycyclic aromatic hydrocarbons in coupled outdoor/indoor atmospheres. Atmospheric Environment, 2003, 37, 703-719.	4.1	109
87	Reevaluation of Airâ^'Water Exchange Fluxes of PCBs in Green Bay and Southern Lake Michigan. Environmental Science & Technology, 2003, 37, 1739-1743.	10.0	35
88	Persistent Organic Pollutants in the Dusts That Settled across Lower Manhattan after September 11, 2001. Environmental Science & Technology, 2003, 37, 502-508.	10.0	82
89	Precipitation Scavenging of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons along an Urban to Over-water Transect. Environmental Science & amp; Technology, 2002, 36, 3763-3771.	10.0	61
90	Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001 Environmental Health Perspectives, 2002, 110, 703-714.	6.0	586

#	Article	IF	CITATIONS
91	The influence of aerosol size and organic carbon content on gas/particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Atmospheric Environment, 2002, 36, 1205-1220.	4.1	53
92	Aerosol size distributions of elemental and organic carbon in urban and over-water atmospheres. Atmospheric Environment, 2000, 34, 1509-1517.	4.1	104
93	PCBs and PAHs in Southern Lake Michigan in 1994 and 1995: Urban Atmospheric Influences and Long-Term Declines. Journal of Great Lakes Research, 2000, 26, 196-208.	1.9	27
94	Influence of Baltimore's Urban Atmosphere on Organic Contaminants over the Northern Chesapeake Bay. Journal of the Air and Waste Management Association, 1999, 49, 959-965.	1.9	44
95	Diffusive Exchange of Polycyclic Aromatic Hydrocarbons across the Airâ^'Water Interface of the Patapsco River, an Urbanized Subestuary of the Chesapeake Bay. Environmental Science & Technology, 1999, 33, 2138-2144.	10.0	89
96	Evidence for Increased Gaseous PCB Fluxes to Lake Michigan from Chicago. Environmental Science & Technology, 1999, 33, 2129-2137.	10.0	86
97	Aerosol Size Distributions of Polycyclic Aromatic Hydrocarbons in Urban and Over-Water Atmospheres. Environmental Science & Technology, 1999, 33, 3324-3331.	10.0	126
98	Polychlorinated Biphenyls in Chicago Precipitation:Â Enhanced Wet Deposition to Near-Shore Lake Michigan. Environmental Science & Technology, 1997, 31, 1534-1538.	10.0	82
99	Polycyclic Aromatic Hydrocarbons in the Great Lakes. , 0, , 307-353.		8