
Hatice Altug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/249674/publications.pdf Version: 2024-02-01

ΗΛΤΙCE ΔΙΤΙΙC

#	Article	IF	CITATIONS
1	Metasurfaceâ€Enhanced Infrared Spectroscopy: An Abundance of Materials and Functionalities. Advanced Materials, 2023, 35, .	21.0	25
2	Advances and applications of nanophotonic biosensors. Nature Nanotechnology, 2022, 17, 5-16.	31.5	308
3	Real-time monitoring of single-cell secretion with a high-throughput nanoplasmonic microarray. Biosensors and Bioelectronics, 2022, 202, 113955.	10.1	10
4	Dielectric Metasurfaces Enabling Advanced Optical Biosensors. ACS Photonics, 2021, 8, 47-60.	6.6	143
5	Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Science Advances, 2021, 7,	10.3	157
6	Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules. Advanced Materials, 2021, 33, e2006054.	21.0	65
7	Biosensors: Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules (Adv. Mater. 14/2021). Advanced Materials, 2021, 33, 2170110.	21.0	1
8	Reply to â€~Physical limitations on broadband invisibility based on fast-light media'. Nature Communications, 2021, 12, 2800.	12.8	3
9	Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nature Communications, 2021, 12, 3246.	12.8	137
10	All-dielectric Metasurfaces Enabling Imaging-based Real-time Biosensing. , 2021, , .		0
11	Programmable Huygensâ \in $^{ m M}$ metasurfaces for active optical phase control. , 2021, , .		1
12	Nanophotonic biosensors harnessing van der Waals materials. Nature Communications, 2021, 12, 3824.	12.8	88
13	Infrared Metasurfaces Augmented by Artificial Intelligence for Monitoring Dynamics between All Major Classes of Biomolecules. , 2021, , .		Ο
14	Waferâ€Scale Functional Metasurfaces for Midâ€Infrared Photonics and Biosensing. Advanced Materials, 2021, 33, e2102232.	21.0	64
15	Imaging-based Optofluidic Biosensors Enabled by All-dielectric metasurfaces. , 2021, , .		Ο
16	Functional mid-infrared metasurfaces for optical wavefront manipulation, sensing and dynamic phase control. , 2021, , .		0
17	Waferâ€5cale Functional Metasurfaces for Midâ€Infrared Photonics and Biosensing (Adv. Mater. 43/2021). Advanced Materials, 2021, 33, 2170337.	21.0	1
18	Infrared Metasurfaces and Artificial Intelligence for Monitoring Dynamics between Biomolecules. , 2021, , .		0

#	Article	IF	CITATIONS
19	Rapid and Digital Detection of Inflammatory Biomarkers Enabled by a Novel Portable Nanoplasmonic Imager. Small, 2020, 16, e1906108.	10.0	67
20	Hybrid Metal-Dielectric Metasurfaces for Refractive Index Sensing. Nano Letters, 2020, 20, 8752-8759.	9.1	39
21	Arbitrarily high time bandwidth performance in a nonreciprocal optical resonator with broken time invariance. Scientific Reports, 2020, 10, 15752.	3.3	6
22	Huygens' Metasurfaces: Allâ€Ðielectric Programmable Huygens' Metasurfaces (Adv. Funct. Mater.) Tj ETQq0 0 0	rgBT /Ove 14.9	erlogk 10 Tf 50
23	Allâ€Dielectric Programmable Huygens' Metasurfaces. Advanced Functional Materials, 2020, 30, 1910259.	14.9	149
24	Fabrication of Sub-10-nm Plasmonic Gaps for Ultra-Sensitive Raman Spectroscopy. Plasmonics, 2020, 15, 1165-1171.	3.4	15
25	Rapid and Digital Detection of Inflammatory Biomarkers Enabled by a Novel Portable Nanoplasmonic Imager. , 2020, , .		0
26	Accessible Superchiral Near-Fields Driven by Tailored Electric and Magnetic Resonances in All-Dielectric Nanostructures. ACS Photonics, 2019, 6, 1939-1946.	6.6	82
27	Ultrabroadband 3D invisibility with fast-light cloaks. Nature Communications, 2019, 10, 4859.	12.8	30
28	Nanophotonic Metasurfaces for Biosensing and Imaging. EPJ Web of Conferences, 2019, 215, 12001.	0.3	1
29	Early sepsis diagnosis via protein and miRNA biomarkers using a novel point-of-care photonic biosensor. Analytica Chimica Acta, 2019, 1077, 232-242.	5.4	71
30	Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Science Advances, 2019, 5, eaaw2871.	10.3	294
31	Metasurfaceâ€Based Molecular Biosensing Aided by Artificial Intelligence. Angewandte Chemie - International Edition, 2019, 58, 14810-14822.	13.8	89
32	MetaoberflÃ e henâ€basierte molekulare Biosensorik unterstützt von künstlicher Intelligenz. Angewandte Chemie, 2019, 131, 14952-14965.	2.0	4
33	Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nature Photonics, 2019, 13, 390-396.	31.4	546
34	Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nature Nanotechnology, 2019, 14, 320-327.	31.5	80
35	All-Dielectric High-Q Metasurfaces for Infrared Absorption Spectroscopy Applications. , 2019, , .		0
36	Label-free Bacteria Quantification in Blood Plasma by a Bioprinted Microarray Based Interferometric Point-of-Care Device. ACS Sensors, 2019, 4, 52-60.	7.8	45

#	Article	IF	CITATIONS
37	Enhanced Circular Dichroism and Chiral Sensing with Bound States in the Continuum. , 2019, , .		4
38	All-dielectric Metasurfaces for Infrared Absorption Spectroscopy Applications. , 2019, , .		1
39	Nanophotonic Biosensors: from Plasmonic to Dielectric Metasurfaces. , 2019, , .		1
40	Lens-Free Interferometric Microscope for Point-of-Care Label-Free Detection of Sepsis Biomarkers. , 2019, , .		1
41	Integrated Nanophotonic Biosensors for Point-of Care Diagnostics and Bioanalytical Applications. , 2019, , .		0
42	Label-free, scalable and point-of-care imaging platform for rapid analysis of biomarker. , 2019, , .		1
43	Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light: Science and Applications, 2018, 7, 17152-17152.	16.6	134
44	High-Contrast Infrared Absorption Spectroscopy via Mass-Produced Coaxial Zero-Mode Resonators with Sub-10 nm Gaps. Nano Letters, 2018, 18, 1930-1936.	9.1	88
45	Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray. ACS Nano, 2018, 12, 4453-4461.	14.6	123
46	Performance metrics and enabling technologies for nanoplasmonic biosensors. Nature Communications, 2018, 9, 5263.	12.8	70
47	Self-Similar Multiresonant Nanoantenna Arrays for Sensing from Near- to Mid-Infrared. ACS Photonics, 2018, 5, 4903-4911.	6.6	59
48	Two-Dimensional Label-Free Affinity Analysis of Tumor-Specific CD8 T Cells with a Biomimetic Plasmonic Sensor. ACS Sensors, 2018, 3, 2286-2295.	7.8	24
49	Quantifying the Limits of Detection of Surface-Enhanced Infrared Spectroscopy with Grating Order-Coupled Nanogap Antennas. ACS Photonics, 2018, 5, 4117-4124.	6.6	46
50	Plasmonic and Dielectric Metasurfaces for Molecular Specific Mid-IR Biosensors. , 2018, , .		0
51	Labelâ€Free Optofluidic Nanobiosensor Enables Realâ€Time Analysis of Singleâ€Cell Cytokine Secretion. Small, 2018, 14, e1800698.	10.0	70
52	Nanophotonic Platforms for Enhanced Chiral Sensing. ACS Photonics, 2018, 5, 2669-2675.	6.6	138
53	Real-Time In Situ Secondary Structure Analysis of Protein Monolayer with Mid-Infrared Plasmonic Nanoantennas. ACS Sensors, 2018, 3, 1109-1117.	7.8	51
54	Nanoimaging and Control of Molecular Vibrations through Electromagnetically Induced Scattering Reaching the Strong Coupling Regime. ACS Photonics, 2018, 5, 3594-3600.	6.6	46

#	Article	IF	CITATIONS
55	Mining the Potential of Label-Free Biosensors for In Vitro Antipsychotic Drug Screening. Biosensors, 2018, 8, 6.	4.7	10
56	Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nature Communications, 2018, 9, 2160.	12.8	176
57	Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 2018, 360, 1105-1109.	12.6	726
58	Optofluidic nanoplasmonic biosensor for label-free live cell analysis in real time. , 2018, , .		2
59	Photonic Metasurfaces for Next-Generation Biosensors. , 2018, , .		1
60	Mid-IR Nanophotonics for Surface Enhanced Spectroscopy. , 2018, , .		0
61	Demonstration of ultra-high time-bandwidth product in a non-reciprocal fiber-optic system. , 2018, , .		0
62	Towards a point-of-care nanoplasmonic biosensor for rapid and multiplexed detection of pathogenic infections. , 2018, , .		0
63	High-Throughput and Ultra-Sensitive Biosensing and Spectroscopy by Plasmonics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 275-282.	0.3	2
64	Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion. Lab on A Chip, 2017, 17, 2208-2217.	6.0	125
65	Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science, 2017, 356, 1260-1264.	12.6	174
66	Double-layer graphene for enhanced tunable infrared plasmonics. Light: Science and Applications, 2017, 6, e16277-e16277.	16.6	143
67	Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosensors and Bioelectronics, 2017, 94, 560-567.	10.1	108
68	Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light: Science and Applications, 2017, 6, e17029-e17029.	16.6	93
69	Ultrafast and Broadband Tuning of Resonant Optical Nanostructures Using Phase hange Materials. Advanced Optical Materials, 2016, 4, 1060-1066.	7.3	67
70	Plasmon coupling in extended structures: Graphene superlattice nanoribbon arrays. Physical Review B, 2016, 93, .	3.2	10
71	Chemical-specific biosensing through mid-infrared graphene plasmons. , 2016, , .		1
72	Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes. Nano Letters, 2016, 16, 1502-1508.	9.1	152

#	Article	IF	CITATIONS
73	Graphene as Enabling Material for Infrared Plasmonic Biosensors. , 2016, , .		Ο
74	Plasmonic Nanoantennas on Nanopedestals for Ultra-Sensitive Vibrational IR-Spectroscopy. , 2015, , .		2
75	Field-portable optofluidic plasmonic biosensor for wide-field and label-free monitoring of molecular interactions. , 2015, , .		0
76	Infrared Vibrational Molecular Hybridization with a Single Optical Antenna. , 2015, , .		1
77	Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing. ACS Photonics, 2015, 2, 1167-1174.	6.6	151
78	Mid-infrared plasmonic biosensing with graphene. Science, 2015, 349, 165-168.	12.6	1,167
79	Theoretical and experimental analysis of subwavelength bowtie-shaped antennas. Journal of Electromagnetic Waves and Applications, 2015, 29, 1686-1698.	1.6	18
80	Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy. Materials Today, 2015, 18, 436-446.	14.2	113
81	Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures. Photonics and Nanostructures - Fundamentals and Applications, 2015, 15, 73-80.	2.0	29
82	Multi-resonant compact nanoaperture with accessible large nearfields. Applied Physics B: Lasers and Optics, 2015, 118, 29-38.	2.2	53
83	Dynamic Tuning of Surface Plasmon Polaritons via Thermally Controlled Liquid Crystals. , 2014, , .		0
84	Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light: Science and Applications, 2014, 3, e122-e122.	16.6	299
85	Three-Dimensional Crystalline and Homogeneous Metallic Nanostructures Using Directed Assembly of Nanoparticles. ACS Nano, 2014, 8, 4547-4558.	14.6	21
86	Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers. ACS Photonics, 2014, 1, 696-702.	6.6	32
87	Accessible Nearfields by Nanoantennas on Nanopedestals for Ultrasensitive Vibrational Spectroscopy. Advanced Optical Materials, 2014, 2, 866-872.	7.3	72
88	Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Scientific Reports, 2014, 4, 6789.	3.3	134
89	Ultra-sensitive time-resolved infrared spectroscopy of biomolecule interactions with plasmonic nanoantennas. , 2014, , .		0
90	In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nature Communications, 2013, 4, 2154.	12.8	319

#	Article	IF	CITATIONS
91	Plasmonically Enhanced Vibrational Biospectroscopy Using Lowâ€Cost Infrared Antenna Arrays by Nanostencil Lithography. Advanced Optical Materials, 2013, 1, 798-803.	7.3	45
92	Thermal Tuning of Surface Plasmon Polaritons Using Liquid Crystals. Advanced Optical Materials, 2013, 1, 915-920.	7.3	54
93	Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. Lab on A Chip, 2013, 13, 4841.	6.0	39
94	Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems. Nano Letters, 2013, 13, 2584-2591.	9.1	162
95	Lithography: Plasmonically Enhanced Vibrational Biospectroscopy Using Lowâ€Cost Infrared Antenna Arrays by Nanostencil Lithography (Advanced Optical Materials 11/2013). Advanced Optical Materials, 2013, 1, 780-780.	7.3	3
96	Multi-Band Surface Enhanced Infrared Absorption Spectroscopy of Molecular Monolayers. , 2013, , .		1
97	Asymmetric Ring/Disk Nanocavities on Conducting Substrates for Strong Fano-Interference. , 2013, , .		0
98	Optical Trapping, Biosensing, and Spectroscopy in a Single Plasmonic Platform. Materials Research Society Symposia Proceedings, 2012, 1414, 15.	0.1	0
99	Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy. Optics Express, 2012, 20, 11953.	3.4	30
100	Mid-infrared photothermal heterodyne spectroscopy in a liquid crystal using a quantum cascade laser. Applied Physics Letters, 2012, 101, 044101.	3.3	44
101	Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification ofÂmolecular monolayers. Nature Materials, 2012, 11, 69-75.	27.5	930
102	Field-effect active plasmonics for ultracompact electro-optic switching. Applied Physics Letters, 2012, 101, 121113.	3.3	29
103	Fano Resonant Ring/Disk Plasmonic Nanocavities on Conducting Substrates for Advanced Biosensing. ACS Nano, 2012, 6, 9989-9995.	14.6	286
104	Reusable Nanostencils for Creating Multiple Biofunctional Molecular Nanopatterns on Polymer Substrate. Nano Letters, 2012, 12, 4817-4822.	9.1	24
105	Nanoparticle-Based Metamaterials as Multiband Plasmonic Resonator Antennas. IEEE Nanotechnology Magazine, 2012, 11, 208-212.	2.0	38
106	Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy. ACS Nano, 2012, 6, 7998-8006.	14.6	459
107	Monopole antenna arrays for optical trapping, spectroscopy, and sensing. Applied Physics Letters, 2011, 98, .	3.3	72
108	On Chip Plasmonic Monopole Nano-Antennas and Circuits. Nano Letters, 2011, 11, 5219-5226.	9.1	64

#	Article	IF	CITATIONS
109	Multi-resonant metamaterials based on UT-shaped nano-aperture antennas. Optics Express, 2011, 19, 7921.	3.4	50
110	Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy. Optics Express, 2011, 19, 11202.	3.4	27
111	Plasmon induced transparency in cascaded π-shaped metamaterials. Optics Express, 2011, 19, 22607.	3.4	57
112	Large-scale plasmonic microarrays for label-free high-throughput screening. Lab on A Chip, 2011, 11, 3596.	6.0	87
113	Directional Double Fano Resonances in Plasmonic Hetero-Oligomers. Nano Letters, 2011, 11, 3694-3700.	9.1	142
114	Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms. Nano Letters, 2011, 11, 1685-1689.	9.1	220
115	High-throughput Fabrication of Plasmonic Nanoantenna Arrays Using Nanostencils for Spectroscopy and Biosensing. , 2011, , .		0
116	Nanostencil lithography for high-throughput fabrication of infrared plasmonic sensors. , 2011, , .		3
117	Optical properties of UT-shaped plasmonic nanoaperture antennas. Proceedings of SPIE, 2011, , .	0.8	0
118	High-throughput engineering of infrared plasmonic nanoantenna arrays with nanostencil lithography. Proceedings of SPIE, 2011, , .	0.8	0
119	Flexible Plasmonics on Unconventional and Nonplanar Substrates. Advanced Materials, 2011, 23, 4422-4430.	21.0	221
120	Flexible Plasmonics: Flexible Plasmonics on Unconventional and Nonplanar Substrates (Adv. Mater.) Tj ETQq0 0 () rgBT/Ov	erląck 10 Tf S
121	Plasmon enhanced detectors for smart lighting applications. , 2011, , .		0
122	Compact and multi-resonant plasmonic metamaterials based on nano-apertures. , 2011, , .		0
123	Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11784-11789.	7.1	445
124	High-throughput nanofabrication of plasmonic structures and metamaterials with high resolution nanostencil lithography. Proceedings of SPIE, 2011, , .	0.8	1
125	Integrated plasmonic systems for ultrasensitive spectroscopy and biodetection. , 2011, , .		0
126	Metamaterials, Plasmonics, and Nanofluidics for Ultrasensitive Spectroscopy and Bio-detection. , 2011,		0

126

8

,.

#	Article	IF	CITATIONS
127	Accessible Field Enhancements with Plasmonic Nanoparticles on Nanopedestals for Nanospectroscopy. , 2011, , .		0
128	High Resolution Large Area Nanopatterning for Plasmonics and Metamaterials with Nanostencil Lithography. , 2011, , .		1
129	Surface Enhanced Vibrational Spectroscopy of Proteins with Plasmonic Nanoantenna Arrays. Materials Research Society Symposia Proceedings, 2010, 1248, 1002.	0.1	Ο
130	Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Applied Physics Letters, 2010, 96, .	3.3	188
131	Plasmonics for ultrasensitive biomolecular nanospectroscopy. , 2010, , .		1
132	Novel plasmonic biosensors molding the flow of light and fluidics at subdiffraction limit. , 2010, , .		0
133	Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays. Optics Express, 2010, 18, 4526.	3.4	107
134	An Optofluidic Nanoplasmonic Biosensor for Direct Detection of Live Viruses from Biological Media. Nano Letters, 2010, 10, 4962-4969.	9.1	408
135	High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy. Nano Letters, 2010, 10, 2511-2518.	9.1	209
136	Engineered plasmonic nanoantenna arrays with nanostencil lithography. , 2010, , .		0
137	Nanoplasmonic systems for ultrasensitive biomolecular detection and identification. , 2010, , .		0
138	Time-resolved lasing action from single and coupled photonic crystal nanocavity array lasers emitting in the telecom band. Journal of Applied Physics, 2009, 105, 093110.	2.5	6
139	Optical Transmission through Optically Thin and Thick Sub-wavelength Hole Arrays. Materials Research Society Symposia Proceedings, 2009, 1208, 1.	0.1	1
140	Surface excitation of hybridized plasmons in metallic nanocavities. , 2009, , .		0
141	Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19227-19232.	7.1	593
142	Hybridized nanocavities as single-polarizedâ€ ⁻ plasmonic antennas. Optics Express, 2009, 17, 20900.	3.4	28
143	Sub-wavelength nanofluidics in photonic crystal sensors. Optics Express, 2009, 17, 24224.	3.4	114
144	Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Applied Physics Letters, 2009, 95, .	3.3	87

#	Article	IF	CITATIONS
145	Ultrafast photonic crystal lasers. Laser and Photonics Reviews, 2008, 2, 264-274.	8.7	60
146	Photonic crystal chips for optical interconnects and quantum information processing. Proceedings of SPIE, 2008, , .	0.8	0
147	Ultrafast photonic crystal nanocavity lasers and optical switches. , 2008, , .		2
148	Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays. Applied Physics Letters, 2008, 93, .	3.3	41
149	Coupled nanocavity arrays. , 2007, , .		0
150	Photonic Crystal Surface Mode Laser. , 2007, , .		0
151	Efficient Terahertz Room-Temperature Photonic Crystal Laser. , 2007, , .		Ο
152	Efficient terahertz room-temperature photonic crystal nanocavity laser. Applied Physics Letters, 2007, 91, 071126.	3.3	15
153	Photonic crystal surface mode laser. , 2007, , .		Ο
154	Low-threshold surface-passivated photonic crystal nanocavity laser. Applied Physics Letters, 2007, 91, 071124.	3.3	43
155	Low-Threshold Ultrafast Surface-Passivated Photonic Crystal Nanocavity Lasers. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
156	Room-Temperature Low-Threshold GaAs/InGaAs Photonic Crystal Laser. , 2007, , .		0
157	Terahertz Room-Temperature Photonic Crystal Laser. , 2007, , .		0
158	Ultrafast photonic crystal nanocavity laser. Nature Physics, 2006, 2, 484-488.	16.7	530
159	Quantum optics and quantum information processing with photonic crystal devices. , 2006, , LWG2.		0
160	Photonic Crystal Microcavities for Classical and Quantum Information Processing. , 2006, , .		0
161	High modulation speed photonic crystal nanocavity array laser. , 2006, , .		0
162	High Speed Dynamics of Photonic Crystal Nanocavity Laser. , 2006, , .		0

#	Article	IF	CITATIONS
163	Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays. Applied Physics Letters, 2005, 86, 111102.	3.3	103
164	Photonic crystal nanocavity array laser. Optics Express, 2005, 13, 8819.	3.4	139
165	Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays. Optics Letters, 2005, 30, 982.	3.3	45
166	Two-dimensional coupled photonic crystal resonator arrays. Applied Physics Letters, 2004, 84, 161-163.	3.3	98
167	Ultrasensitive plasmonic sensors mold the flow of light and fluidics. SPIE Newsroom, 0, , .	0.1	2