Amir Khodabakhsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2496546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs. Physical Review A, 2016, 93, .	2.5	129
2	Laser spectroscopy for breath analysis: towards clinical implementation. Applied Physics B: Lasers and Optics, 2018, 124, 161.	2.2	124
3	Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and precision beyond the Voigt profile. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 204, 63-73.	2.3	79
4	Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–54  μm. Optics Letters, 2016, 41, 2541.	3.3	67
5	Mid-infrared supercontinuum-based upconversion detection for trace gas sensing. Optics Express, 2019, 27, 24469.	3.4	48
6	Time-resolved mid-infrared dual-comb spectroscopy. Scientific Reports, 2019, 9, 17247.	3.3	42
7	Cavity-enhanced optical frequency comb spectroscopy of high-temperature H_2O in a flame. Optics Express, 2014, 22, 13889.	3.4	39
8	Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution. Optics Express, 2017, 25, 21711.	3.4	39
9	Fourier transform spectrometer based on high-repetition-rate mid-infrared supercontinuum sources for trace gas detection. Optics Express, 2021, 29, 22315.	3.4	31
10	A Broadband Mid-Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real-Time Quality Control for Fruit Storage. Sensors, 2019, 19, 2334.	3.8	27
11	Sensitive Spectroscopy of Acetone Using a Widely Tunable External-Cavity Quantum Cascade Laser. Sensors, 2018, 18, 2050.	3.8	25
12	Sensitive multi-species trace gas sensor based on a high repetition rate mid-infrared supercontinuum source. Optics Express, 2020, 28, 26091.	3.4	24
13	Noise-immune cavity-enhanced optical frequency comb spectroscopy. Optics Letters, 2014, 39, 5034.	3.3	23
14	Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection. Applied Physics B: Lasers and Optics, 2015, 119, 87-96.	2.2	20
15	Mid-infrared continuous-filtering Vernier spectroscopy using a doubly resonant optical parametric oscillator. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	20
16	Low-power high-tuning range CMOS ring oscillator VCOs. , 2008, , .		19
17	An experimental water line list at 1950 K in the 6250a€ 6670 cm <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow /><mml:mrow><mml:mo>â°</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mrow </mml:msup></mmi:math 	2.3	14
18	Fegion. Journal of Quantitative Spectroscopy and Radiative Transler, 2010, 205, 213-219. Fourier transform and grating-based spectroscopy with a mid-infrared supercontinuum source for trace gas detection in fruit quality monitoring. Optics Express, 2021, 29, 12381.	3.4	13

Amir Khodabakhsh

#	Article	IF	CITATIONS
19	Broadband Time-Resolved Absorption and Dispersion Spectroscopy of Methane and Ethane in a Plasma Using a Mid-Infrared Dual-Comb Spectrometer. Sensors, 2020, 20, 6831.	3.8	12
20	Detection of OH in an atmospheric flame at 1.5 um using optical frequency comb spectroscopy. Photonics Letters of Poland, 2016, 8, 110.	0.4	12
21	Ultra-broadband infrared gas sensor for pollution detection: the TRIAGE project. JPhys Photonics, 2021, 3, 031003.	4.6	8
22	Mid-infrared dual-comb spectroscopy with absolute frequency calibration using a passive optical reference. Optics Express, 2019, 27, 19282.	3.4	7
23	Signal line shapes of Fourier-transform cavity-enhanced frequency modulation spectroscopy with optical frequency combs. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 358.	2.1	3
24	Experimental-based comparison between off-axis integrated cavity output spectroscopy and multipass-assisted wavelength modulation spectroscopy at 77â€Âµm. OSA Continuum, 2019, 2, 2667.	1.8	3
25	Cavity-enhanced continuous-filtering vernier spectroscopy at 3.3 μm using a femtosecond optical parametric oscillator. , 2017, , .		1
26	Mechanical Fourier Transform Spectrometer with kHz Resolution. , 2017, , .		1
27	Sensitive and broadband measurement of dispersion in a cavity using a Fourier transform spectrometer with kHz resolution: erratum. Optics Express, 2020, 28, 13290.	3.4	1
28	Cavity-Enhanced Optical Frequency Comb Spectroscopy of High-Temperature Water in a Flame. , 2015, , .		0
29	Fourier-Transform-Based Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy. , 2015, ,		Ο
30	Detection of OH and H <inf>2</inf> O in an atmospheric flame by near-infrared optical frequency comb spectroscopy. , 2017, , .		0
31	Faraday rotation spectroscopy using an optical frequency comb. , 2017, , .		Ο
32	Broadband and high resolution direct measurement of cavity resonances. , 2017, , .		0
33	Broadband Multi-Species Trace Gas Detection by Up-Converting Mid-Infrared Supercontinuum Light into the Near-Infrared. , 2019, , .		Ο
34	Broadband Molecular Detection with Cavity-Enhanced Optical Frequency Comb Spectroscopy. , 2014, , .		0
35	Near-Infrared Fourier Transform Cavity-Enhanced Optical Frequency Comb Spectroscopy. , 2016, , .		0
36	Fourier-Transform-Based Noise-Immune Cavity-Enhanced Optical Frequency Comb Spectroscopy. , 2016, ,		0

#	Article	IF	CITATIONS
37	Fourier Transform and Vernier Spectroscopy with a Mid-Infrared Optical Frequency Comb. , 2016, , .		О
38	Optical Frequency Comb Fourier Transform Spectroscopy with Resolution beyond the Path Difference Limit. , 2016, , .		0
39	Cavity-Enhanced Optical Frequency Combs Spectroscopy in the Near- and Mid-Infrared. , 2016, , .		0
40	Cavity-Enhanced Fourier Transform and Vernier Spectroscopy with Optical Frequency Combs. , 2016, , .		0
41	Measurement of H2O and OH in a Flame by Optical Frequency Comb Spectroscopy. , 2016, , .		0
42	Continuous-Filtering Vernier Spectroscopy at 3.3 \hat{l} /4m Using a Femtosecond Optical Parametric Oscillator. , 2017, , .		0
43	Experimental 1.5-1.6 μ m Water Line List at 1950 K. , 2018, , .		Ο
44	Detection of N2O Using An External-Cavity Quantum Cascade Laser. , 2018, , .		0
45	Broadband Mid-infrared Trace Gas Sensor Based on a Supercontinuum Source and Lock-in Detection. , 2020, , .		Ο
46	A Sensitive and Transportable Multi-Species Trace Gas Sensor Based on a Mid-Infrared Supercontinuum Source. , 2020, , .		0
47	Multi-Species Trace Gas Sensor Based on a Mid-Infrared Supercontinuum Source for Monitoring of Fruit Storage. , 2020, , .		Ο