
Dominique Lallemand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2496536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mechano-sensitive response of \hat{l}^21 integrin promotes SRC-positive late endosome recycling and activation of Yes-associated protein. Journal of Biological Chemistry, 2020, 295, 13474-13487.	1.6	8
2	Phosphorylation of Merlin by Aurora A kinase appears necessary for mitotic progression. Journal of Biological Chemistry, 2019, 294, 12992-13005.	1.6	7
3	Targeted next-generation sequencing for differential diagnosis of neurofibromatosis type 2, schwannomatosis, and meningiomatosis. Neuro-Oncology, 2018, 20, 917-929.	0.6	48
4	β1 integrin–dependent Rac/group I PAK signaling mediates YAP activation of Yes-associated protein 1 (YAP1) via NF2/merlin. Journal of Biological Chemistry, 2017, 292, 19179-19197.	1.6	91
5	AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia, 2016, 18, 10-24.	2.3	31
6	Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro-Oncology, 2014, 16, 1196-1209.	0.6	27
7	Moesin/ezrin: a specific role in cell metastasis?. Pigment Cell and Melanoma Research, 2010, 23, 6-7.	1.5	14
8	Tumor-suppression functions of merlin are independent of its role as an organizer of the actin cytoskeleton in Schwann cells. Journal of Cell Science, 2009, 122, 4141-4149.	1.2	45
9	Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene, 2009, 28, 854-865.	2.6	117
10	Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. Journal of Cell Biology, 2007, 177, 893-903.	2.3	316
11	The tumor suppressor merlin interacts with microtubules and modulates Schwann cell microtubule cytoskeleton. Human Molecular Genetics, 2007, 16, 1742-1751.	1.4	39
12	NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes and Development, 2003, 17, 1090-1100.	2.7	263
13	Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO Journal, 2000, 19, 2056-2068.	3.5	344
14	Stress-activated protein kinases are negatively regulated by cell density. EMBO Journal, 1998, 17, 5615-5626.	3.5	87
15	Upregulation of Jun and Fos family members and permanent JNK activity lead to constitutive AP-1 activation in Theileria-transformed leukocytes. Molecular and Biochemical Parasitology, 1998, 94, 215-226.	0.5	97
16	Phosphorylation of c-Jun Is Necessary for Apoptosis Induced by Survival Signal Withdrawal in Cerebellar Granule Neurons. Journal of Neuroscience, 1998, 18, 751-762.	1.7	345
17	Cross-species characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene reveals multiple levels of regulation. Biochemical Journal, 1997, 327, 651-662.	1.7	43
18	Transformation by ras modifies AP1 composition and activity. Oncogene, 1997, 14, 837-847.	2.6	195

#	Article	IF	CITATIONS
19	Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene, 1997, 14, 819-830.	2.6	135
20	Lovastatin-induced inhibition of renal epithelial tubular cell proliferation involves a p21ras activated, AP-1-dependent pathway. Kidney International, 1997, 52, 1016-1027.	2.6	64
21	Mitogen-activated Protein Kinase Pathway and AP-1 Are Activated during cAMP-induced Melanogenesis in B-16 Melanoma Cells. Journal of Biological Chemistry, 1995, 270, 24315-24320.	1.6	176
22	Two Distinct Signalling Pathways Are Involved in the Control of the Biphasic junB Transcription Induced by Interleukin-6 in the B Cell Hybridoma 7TD1. Journal of Biological Chemistry, 1995, 270, 1261-1268.	1.6	19
23	A c-jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron, 1995, 14, 927-939.	3.8	792
24	Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell, 1994, 76, 747-760.	13.5	301