Tahmineh Akbarzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2496534/publications.pdf

Version: 2024-02-01

80 papers 1,875

257101 24 h-index 39 g-index

82 all docs 82 docs citations

82 times ranked 1977 citing authors

#	Article	IF	CITATIONS
1	Phytochemical investigation and biological activity of <i>Doronicum pardalianches</i> L. roots against Alzheimer's disease. Natural Product Research, 2023, 37, 1227-1231.	1.0	3
2	Phytochemical investigation and anticholinesterase activity of ethyl acetate fraction of <i>Myristica fragrans</i> Houtt. seeds. Natural Product Research, 2022, 36, 610-616.	1.0	7
3	Synthesis and evaluation of novel arylisoxazoles linked to tacrine moiety: in vitro and in vivo biological activities against Alzheimer's disease. Molecular Diversity, 2022, 26, 409-428.	2.1	12
4	Novel tacrine-based acetylcholinesterase inhibitors as potential agents for the treatment of Alzheimer's disease: Quinolotacrine hybrids. Molecular Diversity, 2022, 26, 489-503.	2.1	14
5	Ugi Adducts: Design and Synthesis of Natural-based α-glucosidase Inhibitors. Letters in Organic Chemistry, 2022, 19, 1084-1093.	0.2	O
6	Cyanoacetohydrazide linked to 1,2,3-triazole derivatives: a new class of α-glucosidase inhibitors. Scientific Reports, 2022, 12, .	1.6	20
7	6â€Methoxyâ€1â€tetralone Derivatives Bearing an Nâ€Arylpyridinium Moiety as Cholinesterase Inhibitors: Design, Synthesis, Biological Evaluation, and Molecular Docking Study. ChemistrySelect, 2022, 7, .	0.7	4
8	Synthesis of 4-alkylaminoimidazo[1,2-a]pyridines linked to carbamate moiety as potent α-glucosidase inhibitors. Molecular Diversity, 2021, 25, 2399-2409.	2.1	25
9	Novel <i>N</i> â€benzylpiperidine derivatives of 5â€arylisoxazoleâ€3â€carboxamides as antiâ€Alzheimer's agents. Archiv Der Pharmazie, 2021, 354, e2000258.	2.1	12
10	Phytochemical constituents and biological activities of Salvia macrosiphon Boiss BMC Chemistry, 2021, 15, 4.	1.6	11
11	Synthesis and bio-evaluation of new multifunctional methylindolinone-1,2,3-triazole hybrids as anti-Alzheimer's agents. Journal of Molecular Structure, 2021, 1229, 129828.	1.8	24
12	Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors. Journal of Peptide Science, 2021, 27, e3329.	0.8	19
13	Investigation of anti-Alzheimer's activity of aqueous extract of areca nuts (Areca catechu L.): In vitro and in vivo studies. Boletin Latinoamericano Y Del Caribe De Plantas Medicinales Y Aromaticas, 2021, 20, 406-415.	0.2	5
14	Design, synthesis and biological assessment of new 1-benzyl-4-((4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium derivatives (BOPs) as potential dual inhibitors of acetylcholinesterase and butyrylcholinesterase. Heliyon, 2021, 7, e06683.	1.4	7
15	Design, Synthesis, and Molecular Docking of Some Novel Tacrine Based Cyclopentapyranopyridine―and Tetrahydropyranoquinolineâ€Kojic Acid Derivatives as Antiâ€Acetylcholinesterase Agents. Chemistry and Biodiversity, 2021, 18, e2000924.	1.0	14
16	Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Bioorganic Chemistry, 2021, 111, 104869.	2.0	33
17	Design and Synthesis of Novel 5-Arylisoxazole-1,3,4-thiadiazole Hybrids as α-Glucosidase Inhibitors. Letters in Drug Design and Discovery, 2021, 18, 436-444.	0.4	3
18	Phytochemical Analysis and Evaluation of Biological Activity of Lawsonia inermis Seeds Related to Alzheimer's Disease. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-10.	0.5	5

#	Article	IF	Citations
19	Design, Synthesis, and <i>In Vitro</i> and <i>In Vivo</i> Evaluation of Novel Fluconazole-Based Compounds with Promising Antifungal Activities. ACS Omega, 2021, 6, 24981-25001.	1.6	11
20	Novel 1,2,4-oxadiazole derivatives as selective butyrylcholinesterase inhibitors: Design, synthesis and biological evaluation. EXCLI Journal, 2021, 20, 907-921.	0.5	2
21	Anti Compounds from Vent. through Urease Inhibitory and Studies Iranian Journal of Pharmaceutical Research, 2021, 20, 476-489.	0.3	3
22	Design, synthesis, in vivo and in vitro studies of 1,2,3,4-tetrahydro-9H-carbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors. Molecular Diversity, 2020, 24, 211-223.	2.1	4
23	Synthesis and Anticancer Activity of N-(di/trimethoxyaryl)-5-arylisoxazole-3-carboxamide. Polycyclic Aromatic Compounds, 2020, 40, 1568-1580.	1.4	2
24	Design and synthesis of multi-target directed 1,2,3-triazole-dimethylaminoacryloyl-chromenone derivatives with potential use in Alzheimer's disease. BMC Chemistry, 2020, 14, 64.	1.6	22
25	Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase. DARU, Journal of Pharmaceutical Sciences, 2020, 28, 463-477.	0.9	13
26	Design and Synthesis of Novel Arylisoxazoleâ€Chromenone Carboxamides: Investigation of Biological Activities Associated with Alzheimer's Disease. Chemistry and Biodiversity, 2020, 17, e1900746.	1.0	26
27	Thieno[2,3―b] pyridine amines: Synthesis and evaluation of tacrine analogs against biological activities related to Alzheimer's disease. Archiv Der Pharmazie, 2020, 353, 2000101.	2.1	16
28	Anti-cholinesterase and Neuroprotective Activities of Sweet and Bitter Apricot Kernels (L.). Iranian Journal of Pharmaceutical Research, 2020, 19, 216-224.	0.3	8
29	Anticholinesterase Activity of Cinnamic Acids Derivatives: In Vitro, In Vivo Biological Evaluation, and Docking Study. Letters in Drug Design and Discovery, 2020, 17, 965-982.	0.4	1
30	Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 115148.	1.4	29
31	Novel N-benzylpyridinium moiety linked to arylisoxazole derivatives as selective butyrylcholinesterase inhibitors: Synthesis, biological evaluation, and docking study. Bioorganic Chemistry, 2019, 92, 103192.	2.0	16
32	Synthesis and Biological Activity of Some Benzochromenoquinolinones: Tacrine Analogs as Potent Antiâ€Alzheimer's Agents. Chemistry and Biodiversity, 2019, 16, e1800488.	1.0	17
33	Design, synthesis, biological evaluation, and molecular dynamics of novel cholinesterase inhibitors as antiâ€Alzheimer's agents. Archiv Der Pharmazie, 2019, 352, e1800352.	2.1	15
34	Design, synthesis, in vivo, and in silico evaluation of new coumarin-1,2,4-oxadiazole hybrids as anticonvulsant agents. Bioorganic Chemistry, 2019, 89, 102989.	2.0	23
35	Green Decarboxylative Aminoalkylation of Coumarinâ€3â€Carboxylic Acids. ChemistrySelect, 2019, 4, 13695-13697.	0.7	1
36	Design and Synthesis of Selective Acetylcholinesterase Inhibitors: Arylisoxazoleâ€Phenylpiperazine Derivatives. Chemistry and Biodiversity, 2019, 16, e1800433.	1.0	28

#	Article	IF	CITATIONS
37	Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer's compounds: In vitro and in vivo biological evaluation and docking study. Bioorganic Chemistry, 2019, 83, 303-316.	2.0	94
38	Design, synthesis and anti-Alzheimer's activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorganic Chemistry, 2019, 83, 391-401.	2.0	77
39	Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro \hat{l} ±-glucosidase inhibition, kinetic, and docking study. Bioorganic Chemistry, 2019, 83, 161-169.	2.0	119
40	Facile access to new pyrido[2,3-d]pyrimidine derivatives. Molecular Diversity, 2019, 23, 333-340.	2.1	5
41	Design, Synthesis and Cytotoxicity of Novel Coumarin-1,2,3-triazole-1,2,4- Oxadiazole Hybrids as Potent Anti-breast Cancer Agents. Letters in Drug Design and Discovery, 2019, 16, 818-824.	0.4	16
42	, a Bioactive Essential Oil: Chemical Composition and Biological Activities. Iranian Journal of Pharmaceutical Research, 2019, 18, 412-421.	0.3	8
43	Palladium functionalized phosphinite polyethyleneimine grafted magnetic silica nanoparticles as an efficient catalyst for the synthesis of isoquinolino[1,2- <i>b</i>)quinazolin-8-ones. New Journal of Chemistry, 2018, 42, 5499-5507.	1.4	25
44	Design and synthesis of novel coumarin-pyridinium hybrids: In vitro cholinesterase inhibitory activity. Bioorganic Chemistry, 2018, 77, 311-319.	2.0	44
45	Chemodiversity of <i>Nepeta menthoides</i> Boiss. & Boiss. & Bohse. essential oil from Iran and antimicrobial, acetylcholinesterase inhibitory and cytotoxic properties of 1,8-cineole chemotype. Natural Product Research, 2018, 32, 2745-2748.	1.0	22
46	Design, synthesis, and biological evaluation of selective and potent Carbazole-based butyrylcholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 4952-4962.	1.4	17
47	Synthesis of New Benzimidazoleâ€1,2,3â€triazole Hybrids as Tyrosinase Inhibitors. Chemistry and Biodiversity, 2018, 15, e1800120.	1.0	50
48	Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and \hat{I}^2 -secretase inhibition activities. European Journal of Medicinal Chemistry, 2018, 155, 49-60.	2.6	25
49	Synthesis of Novel Tacrine Analogs as Acetylcholinesterase Inhibitors. Journal of Heterocyclic Chemistry, 2017, 54, 384-390.	1.4	19
50	In vitro cholinesterase inhibitory activity of some plants used in Iranian traditional medicine. Natural Product Research, 2017, 31, 2690-2694.	1.0	18
51	Synthesis of novel chromenones linked to 1,2,3-triazole ring system: Investigation of biological activities against Alzheimer's disease. Bioorganic Chemistry, 2017, 70, 86-93.	2.0	61
52	A green and efficient synthesis of 2-thioxoquinazolinone derivatives in water using potassium thiocyanate. Journal of Sulfur Chemistry, 2017, 38, 519-529.	1.0	4
53	Novel tacrine-1,2,3-triazole hybrids: InÂvitro, inÂvivo biological evaluation and docking study of cholinesterase inhibitors. European Journal of Medicinal Chemistry, 2017, 125, 1200-1212.	2.6	88
54	Synthesis and biological evaluation of novel imidazopyrimidinâ€3â€amines as anticancer agents. Chemical Biology and Drug Design, 2017, 89, 797-805.	1.5	11

#	Article	IF	CITATIONS
55	Novel Indole-Isoxazole Hybrids: Synthesis and In Vitro Anti-Cholinesterase Activity. Letters in Drug Design and Discovery, 2017, 14, .	0.4	8
56	An Evidence-Based Review on Medicinal Plants Used as Insecticide and Insect Repellent in Traditional Iranian Medicine. Iranian Red Crescent Medical Journal, 2016, 18, e22361.	0.5	31
57	In vitro antimicrobial and acetylcholinesterase inhibitory activities of coumarins from Ferulago carduchorum. Medicinal Chemistry Research, 2016, 25, 1623-1629.	1.1	26
58	Synthesis of novel 1,2,3-triazole derivatives of 2,3-dihydroquinazolin-4(1H)-one. Monatshefte $F\tilde{A}^{1}/4r$ Chemie, 2016, 147, 2151-2156.	0.9	2
59	Novel Tacrineâ∈Based Pyrano[3â∈™,4â∈™:5,6]pyrano[2,3â∈ <i>b</i>)]quinolinones: Synthesis and Cholinesterase Inhibitory Activity. Archiv Der Pharmazie, 2016, 349, 915-924.	2.1	18
60	Synthesis and Cytotoxic Evaluation of Novel 1,2,3-Triazole-4-Linked (2 <i>E</i> ,6 <i>E</i>)-2-Benzylidene-6-(4-nitrobenzylidene)cyclohexanones. Helvetica Chimica Acta, 2016, 99, 175-180.	1.0	5
61	Design and synthesis of novel anti-Alzheimer's agents: Acridine-chromenone and quinoline-chromenone hybrids. Bioorganic Chemistry, 2016, 67, 84-94.	2.0	55
62	Design, synthesis, pharmacological evaluation, and docking study of new acridone-based 1,2,4-oxadiazoles as potential anticonvulsant agents. European Journal of Medicinal Chemistry, 2016, 112, 91-98.	2.6	75
63	1,2,3-Triazole-Isoxazole Based Acetylcholinesterase Inhibitors: Synthesis, Biological Evaluation and Docking Study. Letters in Drug Design and Discovery, 2016, 14, 58-65.	0.4	20
64	Caring for Newborn's Umbilical Cord from Iranian Traditional Medicine Point of View. Iranian Journal of Medical Sciences, 2016, 41, S24.	0.3	0
65	Phytochemical analysis, antimicrobial, antioxidant activities and total phenols of Ferulago carduchorum in two vegetative stages (flower and fruit). Pakistan Journal of Pharmaceutical Sciences, 2016, 29, 623-8.	0.2	7
66	Design, Synthesis, Biological Evaluation, and Docking Study of Acetylcholinesterase Inhibitors: New Acridoneâ€1,2,4â€oxadiazoleâ€1,2,3â€triazole Hybrids. Chemical Biology and Drug Design, 2015, 86, 1425-1432	. 1.5	58
67	Synthesis and cytotoxic activity of novel poly-substituted imidazo[2,1- \$\$c\$\$ c][1,2,4]triazin-6-amines. Molecular Diversity, 2015, 19, 273-281.	2.1	20
68	Potent acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, and docking study of acridone linked to 1,2,3-triazole derivatives. European Journal of Medicinal Chemistry, 2015, 92, 799-806.	2.6	91
69	Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9(10H)-acridinone-1,2,3-triazoles. Molecular Diversity, 2015, 19, 787-795.	2.1	41
70	Synthesis of Novel 1,2,3-Triazole-dihydro $[3,2-\langle i\rangle c\langle i\rangle]$ chromenones as Acetylcholinesterase Inhibitors. Synthetic Communications, 2015, 45, 2311-2318.	1.1	29
71	Synthesis and evaluation of novel oxoisoindoline derivatives as acetylcholinesterase inhibitors. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2015, 146, 637-643.	0.9	20
72	Synthesis and in Vitro in Vitro for the Novel Triazole-Isoxazole Derivatives. Journal of Heterocyclic Chemistry, 2015, 52, 1743-1747.	1.4	14

#	Article	lF	CITATIONS
73	Synthesis of Novel Benzo[6,7][1,4]oxazepino[4,5-a]quinazolinone Derivatives via Transition-Metal-Free Intramolecular Hydroamination. Synlett, 2014, 25, 385-388.	1.0	26
74	Synthesis and evaluation of antiproliferative activity of substituted N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamides. Tetrahedron Letters, 2014, 55, 373-375.	0.7	7
75	2â€Aminoâ€3â€eyanoâ€4â€(5â€erylisoxazolâ€3â€yl)â€4 <i>H</i> à€chromenes: Synthesis and <i>In Vitro</i> Crossing Archiv Der Pharmazie, 2012, 345, 386-392.	ytotoxic A 2.1	ctivity. 40
76	Synthesis of novel 2â€(2â€methylsulfonylâ€1â€methylâ€1 <i>H</i> à€imidazolâ€5â€yl)â€5â€(alkylsulfonyl)â€1, Journal of Heterocyclic Chemistry, 2011, 48, 454-457.	3,4â €t hiad 1.4	diazoles.
77	4-Aryl-4H-Chromene-3-Carbonitrile Derivatives: Evaluation of Src Kinase Inhibitory and Anticancer Activities. Medicinal Chemistry, 2011, 7, 466-472.	0.7	29
78	Synthesis of Two Novel 3-Amino-5-[4-chloro-2-phenoxyphenyl]-4H-1,2,4-triazoles with Anticonvulsant Activity. Iranian Journal of Pharmaceutical Research, 2010, 9, 265-9.	0.3	19
79	Oneâ€Pot Synthesis of 4â€Alkoxybenzo[c]thiophenes. Synthetic Communications, 2004, 34, 1455-1462.	1.1	4
80	Design and synthesis of 4H-3-(2-Phenoxy)phenyl-1,2,4-triazole derivatives as benzodiazepine receptor agonists. Bioorganic and Medicinal Chemistry, 2003, 11, 769-773.	1.4	67