
## **Richard Rosenquist**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2496098/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood, 2015, 126, 233-241.                                                                                                 | 1.4  | 361       |
| 2  | Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood, 2012, 119, 4467-4475.                                               | 1.4  | 350       |
| 3  | Downregulation of Death-Associated Protein Kinase 1 (DAPK1) in Chronic Lymphocytic Leukemia. Cell, 2007, 129, 879-890.                                                                                                     | 28.9 | 338       |
| 4  | Somatically mutated Ig VH3-21 genes characterize a new subset of chronic lymphocytic leukemia.<br>Blood, 2002, 99, 2262-2264.                                                                                              | 1.4  | 289       |
| 5  | Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic<br>leukemia: implications for the role of antigen selection in leukemogenesis. Blood, 2008, 111, 1524-1533.                  | 1.4  | 285       |
| 6  | Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vλ2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood, 2003, 101, 4952-4957.                  | 1.4  | 280       |
| 7  | Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia, 2015, 29, 329-336.                                                                                                                         | 7.2  | 253       |
| 8  | Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.                                                           | 3.5  | 244       |
| 9  | Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood, 2004, 104, 2879-2885.                                  | 1.4  | 241       |
| 10 | A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood, 2008, 111, 3838-3848.                                                   | 1.4  | 236       |
| 11 | Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk.<br>Nature Genetics, 2010, 42, 132-136.                                                                                | 21.4 | 223       |
| 12 | ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia.<br>Leukemia, 2007, 21, 1-3.                                                                                                  | 7.2  | 219       |
| 13 | Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood, 2013, 122, 2673-2682.                                                                                     | 1.4  | 208       |
| 14 | Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using<br>chronic lymphocytic leukemia patients independent of geographic origin and mutational status.<br>Blood, 2006, 107, 2889-2894. | 1.4  | 167       |
| 15 | A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic<br>leukemia. Nature Genetics, 2014, 46, 56-60.                                                                             | 21.4 | 166       |
| 16 | Lymphoma development in patients with autoimmune and inflammatory disorders – What are the<br>driving forces?. Seminars in Cancer Biology, 2014, 24, 61-70.                                                                | 9.6  | 150       |
| 17 | Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of<br>807 cases. Blood, 2011, 118, 3088-3095.                                                                           | 1.4  | 149       |
| 18 | ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia—update on methodological approaches and results interpretation. Leukemia, 2018, 32, 1070-1080.                                             | 7.2  | 149       |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: An European Research<br>Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation<br>project. Cytometry Part B - Clinical Cytometry, 2018, 94, 121-128. | 1.5 | 133       |
| 20 | Genetic heterogeneity in primary and relapsed mantle cell lymphomas: Impact of recurrent <i>CARD11</i> mutations. Oncotarget, 2016, 7, 38180-38190.                                                                                                                  | 1.8 | 130       |
| 21 | Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations. Blood, 2016, 127, 1007-1016.                                                                                                                         | 1.4 | 130       |
| 22 | Genetics and Prognostication in Splenic Marginal Zone Lymphoma: Revelations from Deep Sequencing.<br>Clinical Cancer Research, 2015, 21, 4174-4183.                                                                                                                  | 7.0 | 129       |
| 23 | Differential genome-wide array–based methylation profiles in prognostic subsets of chronic<br>lymphocytic leukemia. Blood, 2010, 115, 296-305.                                                                                                                       | 1.4 | 126       |
| 24 | Drug-perturbation-based stratification of blood cancer. Journal of Clinical Investigation, 2017, 128, 427-445.                                                                                                                                                       | 8.2 | 124       |
| 25 | Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood, 2008, 111, 2246-2252.                                                                                              | 1.4 | 122       |
| 26 | Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia, 2017, 31, 282-291.                                                                                                                                                                            | 7.2 | 122       |
| 27 | T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica, 2017, 102, 562-572.                                                                                                             | 3.5 | 121       |
| 28 | CD38 expression is a poor predictor for VH gene mutational status and prognosis in chronic lymphocytic leukemia. Blood, 2001, 97, 1892-1894.                                                                                                                         | 1.4 | 119       |
| 29 | Telomere length as a prognostic parameter in chronic lymphocytic leukemia with special reference to<br>VH gene mutation status. Blood, 2005, 105, 4807-4812.                                                                                                         | 1.4 | 118       |
| 30 | Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC<br>recommendations. Leukemia, 2017, 31, 1477-1481.                                                                                                                               | 7.2 | 118       |
| 31 | Screening for copyâ€number alterations and loss of heterozygosity in chronic lymphocytic leukemia—A<br>comparative study of four differently designed, high resolution microarray platforms. Genes<br>Chromosomes and Cancer, 2008, 47, 697-711.                     | 2.8 | 111       |
| 32 | A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia, 2010, 24, 125-132.                                                                                            | 7.2 | 109       |
| 33 | 450K-array analysis of chronic lymphocytic leukemia cells reveals global DNA methylation to be relatively stable over time and similar in resting and proliferative compartments. Leukemia, 2013, 27, 150-158.                                                       | 7.2 | 95        |
| 34 | <i>TP53</i> aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica, 2018, 103, 1956-1968.                                                                                                      | 3.5 | 94        |
| 35 | Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematology,the, 2014, 1, e74-e84.                                                                                        | 4.6 | 93        |
| 36 | Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia, 2013, 27, 2196-2199.                                                                                    | 7.2 | 90        |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia.<br>Haematologica, 2011, 96, 1161-1169.                                                                                                  | 3.5  | 87        |
| 38 | DNA repair genes are selectively mutated in diffuse large B cell lymphomas. Journal of Experimental<br>Medicine, 2013, 210, 1729-1742.                                                                                                   | 8.5  | 87        |
| 39 | International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia. Blood, 2020, 135, 1859-1869.                                                                                                                   | 1.4  | 86        |
| 40 | Functional loss of lκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia. Journal<br>of Experimental Medicine, 2015, 212, 833-843.                                                                                 | 8.5  | 85        |
| 41 | Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma.<br>Blood, 2016, 128, 2666-2670.                                                                                                       | 1.4  | 82        |
| 42 | Immunoglobulin sequence analysis and prognostication in CLL: guidelines from the ERIC review board for reliable interpretation of problematic cases. Leukemia, 2011, 25, 979-984.                                                        | 7.2  | 75        |
| 43 | Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia. Nature Communications, 2017, 8, 14175.                                                                                     | 12.8 | 75        |
| 44 | Large but not small copy-number alterations correlate to high-risk genomic aberrations and survival<br>in chronic lymphocytic leukemia: a high-resolution genomic screening of newly diagnosed patients.<br>Leukemia, 2010, 24, 211-215. | 7.2  | 72        |
| 45 | Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL. Blood, 2021, 137, 1365-1376.                                                                                              | 1.4  | 72        |
| 46 | Evidence for the significant role of immunoglobulin light chains in antigen recognition and selection in chronic lymphocytic leukemia. Blood, 2009, 113, 403-411.                                                                        | 1.4  | 71        |
| 47 | Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood, 2015, 125, 856-859.                                                                                                                          | 1.4  | 70        |
| 48 | On the way towards a â€~CLL prognostic index': focus on TP53, BIRC3, SF3B1, NOTCH1 and MYD88 in a population-based cohort. Leukemia, 2014, 28, 710-713.                                                                                  | 7.2  | 69        |
| 49 | Genomic disruption of the histone methyltransferase SETD2 in chronic lymphocytic leukaemia.<br>Leukemia, 2016, 30, 2179-2186.                                                                                                            | 7.2  | 69        |
| 50 | Antigens in chronic lymphocytic leukemia—Implications for cell origin and leukemogenesis. Seminars<br>in Cancer Biology, 2010, 20, 400-409.                                                                                              | 9.6  | 68        |
| 51 | Extensive intraclonal diversification in a subgroup of chronic lymphocytic leukemia patients with stereotyped IGHV4-34 receptors: implications for ongoing interactions with antigen. Blood, 2009, 114, 4460-4468.                       | 1.4  | 64        |
| 52 | Comprehensive characterization of IGHV3-21–expressing B-cell chronic lymphocytic leukemia: an<br>Italian multicenter study. Blood, 2007, 109, 2989-2998.                                                                                 | 1.4  | 62        |
| 53 | NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia, 2013, 27, 512-514.                                                                                      | 7.2  | 62        |
| 54 | NF-κB activation in chronic lymphocytic leukemia: A point of convergence of external triggers and intrinsic lesions. Seminars in Cancer Biology, 2016, 39, 40-48.                                                                        | 9.6  | 60        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Antigen receptor stereotypy across B-cell lymphoproliferations: the case of IGHV4-59/IGKV3-20 receptors with rheumatoid factor activity. Leukemia, 2012, 26, 1127-1131.                                                        | 7.2  | 59        |
| 56 | Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand?. Leukemia and Lymphoma, 2013, 54, 2351-2364.                                                                           | 1.3  | 59        |
| 57 | Genetic landscape and deregulated pathways in Bâ€cell lymphoid malignancies. Journal of Internal<br>Medicine, 2017, 282, 371-394.                                                                                              | 6.0  | 59        |
| 58 | Targeted next-generation sequencing in chronic lymphocytic leukemia: a high-throughput yet tailored approach will facilitate implementation in a clinical setting. Haematologica, 2015, 100, 370-376.                          | 3.5  | 57        |
| 59 | Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica, 2016, 101, 959-967.                                                            | 3.5  | 57        |
| 60 | Deciphering the molecular landscape in chronic lymphocytic leukemia: time frame of disease evolution. Haematologica, 2015, 100, 7-16.                                                                                          | 3.5  | 54        |
| 61 | Lymphoblastoid cell line with B1 cell characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV infection. Oncolmmunology, 2012, 1, 18-27.                                                         | 4.6  | 53        |
| 62 | U-CAN: a prospective longitudinal collection of biomaterials and clinical information from adult cancer patients in Sweden. Acta Oncológica, 2018, 57, 187-194.                                                                | 1.8  | 52        |
| 63 | Targetable genetic alterations of <i>TCF4</i> ( <i>E2-2</i> ) drive immunoglobulin expression in diffuse large B cell lymphoma. Science Translational Medicine, 2019, 11, .                                                    | 12.4 | 51        |
| 64 | Intraclonal diversification of immunoglobulin light chains in a subset of chronic lymphocytic leukemia alludes to antigen-driven clonal evolution. Leukemia, 2010, 24, 1317-1324.                                              | 7.2  | 50        |
| 65 | Cellâ€free tumour <scp>DNA</scp> testing for early detection of cancer – a potential future tool.<br>Journal of Internal Medicine, 2019, 286, 118-136.                                                                         | 6.0  | 50        |
| 66 | Long-term real-world results of ibrutinib therapy in patients with relapsed or refractory chronic<br>lymphocytic leukemia: 30-month follow up of the Swedish compassionate use cohort. Haematologica,<br>2019, 104, e208-e210. | 3.5  | 50        |
| 67 | LPL is the strongest prognostic factor in a comparative analysis of RNA-based markers in early chronic<br>lymphocytic leukemia. Haematologica, 2011, 96, 1153-1160.                                                            | 3.5  | 49        |
| 68 | Association between telomere length and VH gene mutation status in chronic lymphocytic leukaemia:<br>clinical and biological implications. British Journal of Cancer, 2003, 88, 593-598.                                       | 6.4  | 47        |
| 69 | Immunogenetic Studies of Chronic Lymphocytic Leukemia: Revelations and Speculations about Ontogeny and Clinical Evolution. Cancer Research, 2014, 74, 4211-4216.                                                               | 0.9  | 47        |
| 70 | Highly similar genomic landscapes in monoclonal B-cell lymphocytosis and ultra-stable chronic<br>lymphocytic leukemia with low frequency of driver mutations. Haematologica, 2018, 103, 865-873.                               | 3.5  | 47        |
| 71 | Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed?. Journal of Internal Medicine, 2016, 279, 347-357.                                                                                   | 6.0  | 46        |
| 72 | EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia.<br>Leukemia, 2017, 31, 1547-1554.                                                                                                  | 7.2  | 46        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Uncovering the DNA methylome in chronic lymphocytic leukemia. Epigenetics, 2013, 8, 138-148.                                                                                                                                   | 2.7  | 44        |
| 74 | Massive and parallel expression profiling using microarrayed single-cell sequencing. Nature Communications, 2016, 7, 13182.                                                                                                    | 12.8 | 44        |
| 75 | Prognostic impact of prevalent chronic lymphocytic leukemia stereotyped subsets: analysis within prospective clinical trials of the German CLL Study Group (GCLLSG). Haematologica, 2020, 105, 2598-2607.                      | 3.5  | 44        |
| 76 | High-density screening reveals a different spectrum of genomic aberrations in chronic lymphocytic<br>leukemia patients with 'stereotyped' IGHV3-21 and IGHV4-34 B-cell receptors. Haematologica, 2010, 95,<br>1519-1525.       | 3.5  | 43        |
| 77 | <i>microRNA-34b/c</i> on chromosome 11q23 is aberrantly methylated in chronic lymphocytic leukemia.<br>Epigenetics, 2014, 9, 910-917.                                                                                          | 2.7  | 43        |
| 78 | Clinical impact of recurrently mutated genes on lymphoma diagnostics: state-of-the-art and beyond.<br>Haematologica, 2016, 101, 1002-1009.                                                                                     | 3.5  | 43        |
| 79 | Antigen Selection Shapes the T-cell Repertoire in Chronic Lymphocytic Leukemia. Clinical Cancer Research, 2016, 22, 167-174.                                                                                                   | 7.0  | 43        |
| 80 | Genomic arrays identify high-risk chronic lymphocytic leukemia with genomic complexity: a<br>multi-center study. Haematologica, 2020, 106, 87-97.                                                                              | 3.5  | 43        |
| 81 | Distinctive gene expression pattern in VH3-21 utilizing B-cell chronic lymphocytic leukemia. Blood, 2005, 106, 681-689.                                                                                                        | 1.4  | 42        |
| 82 | Clonal rearrangements in childhood and adult precursor B acute lymphoblastic leukemia: a<br>comparative polymerase chain reaction study using multiple sets of primers. European Journal of<br>Haematology, 1999, 63, 211-218. | 2.2  | 42        |
| 83 | A key role for EZH2 in epigenetic silencing of HOX genes in mantle cell lymphoma. Epigenetics, 2013, 8, 1280-1288.                                                                                                             | 2.7  | 42        |
| 84 | Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia. Haematologica, 2019, 104, 360-369.                                                                         | 3.5  | 42        |
| 85 | The complex interplay between cell-intrinsic and cell-extrinsic factors driving the evolution of chronic lymphocytic leukemia. Seminars in Cancer Biology, 2015, 34, 22-35.                                                    | 9.6  | 40        |
| 86 | Epigenetic deregulation in chronic lymphocytic leukemia: Clinical and biological impact. Seminars in<br>Cancer Biology, 2018, 51, 1-11.                                                                                        | 9.6  | 40        |
| 87 | Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence<br>for shared aetiology. Blood Cancer Journal, 2019, 9, 1.                                                                    | 6.2  | 40        |
| 88 | Triggering interferon signaling in T cells with avadomide sensitizes CLL to anti-PD-L1/PD-1 immunotherapy. Blood, 2021, 137, 216-231.                                                                                          | 1.4  | 40        |
| 89 | TP53 Mutations are infrequent in newly diagnosed chronic lymphocytic leukemia. Leukemia Research,<br>2011, 35, 272-274.                                                                                                        | 0.8  | 38        |
| 90 | Antigen selection in B-cell lymphomas—Tracing the evidence. Seminars in Cancer Biology, 2013, 23,<br>399-409.                                                                                                                  | 9.6  | 38        |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Short telomere length is associated with <i>NOTCH1/SF3B1/TP53</i> aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients. American Journal of Hematology, 2013, 88, 647-651.                           | 4.1 | 38        |
| 92  | Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles. Epigenetics, 2012, 7, 1435-1442.                                            | 2.7 | 37        |
| 93  | Additional trisomies amongst patients with chronic lymphocytic leukemia carrying trisomy 12: the accompanying chromosome makes a difference. Haematologica, 2016, 101, e299-e302.                                                     | 3.5 | 35        |
| 94  | Clinical utility of whole-genome sequencing in precision oncology. Seminars in Cancer Biology, 2022, 84, 32-39.                                                                                                                       | 9.6 | 35        |
| 95  | Verification that common variation at 2q37.1, 6p25.3, 11q24.1, 15q23, and 19q13.32 influences chronic<br>lymphocytic leukaemia risk. British Journal of Haematology, 2010, 150, 473-479.                                              | 2.5 | 34        |
| 96  | Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: the 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia, 2022, 36, 1961-1968.                                        | 7.2 | 34        |
| 97  | Distinct gene expression profiles in subsets of chronic lymphocytic leukemia expressing stereotyped<br>IGHV4-34 B-cell receptors. Haematologica, 2010, 95, 2072-2079.                                                                 | 3.5 | 33        |
| 98  | Prognostic relevance of MYD88 mutations in CLL: the jury is still out. Blood, 2015, 126, 1043-1044.                                                                                                                                   | 1.4 | 32        |
| 99  | Lipoprotein lipase is differentially expressed in prognostic subsets of chronic lymphocytic leukemia<br>but displays invariably low catalytical activity. Leukemia Research, 2010, 34, 301-306.                                       | 0.8 | 30        |
| 100 | <i><i>ANGPT2promoter methylation is strongly associated with gene expression and prognosis in chronic lymphocytic leukemia. Epigenetics, 2013, 8, 720-729.</i></i>                                                                    | 2.7 | 30        |
| 101 | A Systematic Search Into The Role Of IGHV Gene Replacement In Shaping The Immunoglobulin Repertoire<br>Of Chronic Lymphocytic Leukemia. Blood, 2013, 122, 4129-4129.                                                                  | 1.4 | 30        |
| 102 | Clonal evolution as judged by immunoglobulin heavy chain gene rearrangements in relapsing<br>precursorâ€B acute lymphoblastic leukemia. European Journal of Haematology, 1999, 63, 171-179.                                           | 2.2 | 29        |
| 103 | Highâ€resolution genomic screening in mantle cell lymphoma—specific changes correlate with genomic complexity, the proliferation signature and survival. Genes Chromosomes and Cancer, 2011, 50, 113-121.                             | 2.8 | 29        |
| 104 | Immunoglobulin gene analysis in chronic lymphocytic leukemia in the era of next generation sequencing. Leukemia, 2020, 34, 2545-2551.                                                                                                 | 7.2 | 29        |
| 105 | The histone methyltransferase EZH2 as a novel prosurvival factor in clinically aggressive chronic<br>lymphocytic leukemia. Oncotarget, 2016, 7, 35946-35959.                                                                          | 1.8 | 29        |
| 106 | Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification. Haematologica, 2017, 102, 968-971.                                                                          | 3.5 | 28        |
| 107 | Chronic Lymphocytic Leukemia with Mutated IGHV4-34 Receptors: Shared and Distinct Immunogenetic Features and Clinical Outcomes. Clinical Cancer Research, 2017, 23, 5292-5301.                                                        | 7.0 | 27        |
| 108 | Cellâ€ofâ€origin determined by both gene expression profiling and immunohistochemistry is the<br>strongest predictor of survival in patients with diffuse large Bâ€cell lymphoma. American Journal of<br>Hematology, 2020, 95, 57-67. | 4.1 | 27        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.                | 5.0 | 26        |
| 110 | Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia.<br>Clinical Cancer Research, 2016, 22, 6217-6227.                                                         | 7.0 | 26        |
| 111 | Whole-Exome Sequencing Revealed No Recurrent Mutations within the PI3K Pathway in Relapsed<br>Chronic Lymphocytic Leukemia Patients Progressing Under Idelalisib Treatment. Blood, 2016, 128,<br>2770-2770. | 1.4 | 26        |
| 112 | Patients with chronic lymphocytic leukemia with mutated VH genes presenting with Binet stage B or C form a subgroup with a poor outcome. Haematologica, 2005, 90, 465-9.                                    | 3.5 | 26        |
| 113 | Inhibition of SYK or BTK augments venetoclax sensitivity in SHP1-negative/BCL-2-positive diffuse large<br>B-cell lymphoma. Leukemia, 2019, 33, 2416-2428.                                                   | 7.2 | 25        |
| 114 | Clinical significance of DNA methylation in chronic lymphocytic leukemia patients: results from 3 UK clinical trials. Blood Advances, 2019, 3, 2474-2481.                                                   | 5.2 | 25        |
| 115 | Diseaseâ€biased and shared characteristics of the immunoglobulin gene repertoires in marginal zone B<br>cell lymphoproliferations. Journal of Pathology, 2019, 247, 416-421.                                | 4.5 | 25        |
| 116 | Common variation at 12q24.13 (OAS3) influences chronic lymphocytic leukemia risk. Leukemia, 2015, 29,<br>748-751.                                                                                           | 7.2 | 24        |
| 117 | EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia. Epigenetics, 2019, 14, 1125-1140.                                                       | 2.7 | 24        |
| 118 | Integrated epigenomic and transcriptomic analysis reveals <i>TP63</i> as a novel player in clinically aggressive chronic lymphocytic leukemia. International Journal of Cancer, 2019, 144, 2695-2706.       | 5.1 | 24        |
| 119 | Next generation RNA-sequencing in prognostic subsets of chronic lymphocytic leukemia. American<br>Journal of Hematology, 2012, 87, 737-740.                                                                 | 4.1 | 23        |
| 120 | Surface antigen expression and correlation with variable heavy-chain gene mutation status in chronic<br>lymphocytic leukemia. European Journal of Haematology, 2003, 70, 53-59.                             | 2.2 | 22        |
| 121 | Trailblazing precision medicine in Europe: A joint view by Genomic Medicine Sweden and the Centers<br>for Personalized Medicine, ZPM, in Germany. Seminars in Cancer Biology, 2022, 84, 242-254.            | 9.6 | 22        |
| 122 | Analytical demands to use whole-genome sequencing in precision oncology. Seminars in Cancer<br>Biology, 2022, 84, 16-22.                                                                                    | 9.6 | 22        |
| 123 | The novel NF-κB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia. Blood Cancer<br>Journal, 2011, 1, e12-e12.                                                                            | 6.2 | 21        |
| 124 | Coexistence of trisomies of chromosomes 12 and 19 in chronic lymphocytic leukemia occurs exclusively in the rare IgG-positive variant. Leukemia, 2012, 26, 170-172.                                         | 7.2 | 21        |
| 125 | Prognostic impact of epigenetic classification in chronic lymphocytic leukemia: The case of subset #2.<br>Epigenetics, 2016, 11, 449-455.                                                                   | 2.7 | 21        |
| 126 | Higher-order immunoglobulin repertoire restrictions in CLL: the illustrative case of stereotyped subsets 2 and 169. Blood, 2021, 137, 1895-1904.                                                            | 1.4 | 21        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Epigenetic silencing of miR-26A1 in chronic lymphocytic leukemia and mantle cell lymphoma: Impact on<br>EZH2 expression. Epigenetics, 2016, 11, 335-343.                                                        | 2.7 | 20        |
| 128 | Innovation in the prognostication of chronic lymphocytic leukemia: how far beyond TP53 gene analysis can we go?. Haematologica, 2016, 101, 263-265.                                                             | 3.5 | 19        |
| 129 | Technological readiness and implementation of genomicâ€driven precision medicine for complex diseases. Journal of Internal Medicine, 2021, 290, 602-620.                                                        | 6.0 | 18        |
| 130 | A comprehensive evaluation of the role of genetic variation in follicular lymphoma survival. BMC<br>Medical Genetics, 2014, 15, 113.                                                                            | 2.1 | 17        |
| 131 | The frequency of <i><scp>TP</scp>53</i> gene defects differs between chronic lymphocytic leukaemia subgroups harbouring distinct antigen receptors. British Journal of Haematology, 2014, 166, 621-625.         | 2.5 | 17        |
| 132 | An Immunogenetic Signature of Ongoing Antigen Interactions in Splenic Marginal Zone Lymphoma<br>Expressing IGHV1-2*04 Receptors. Clinical Cancer Research, 2016, 22, 2032-2040.                                 | 7.0 | 17        |
| 133 | Unlocking the secrets of immunoglobulin receptors in mantle cell lymphoma: Implications for the origin and selection of the malignant cells. Seminars in Cancer Biology, 2011, 21, 299-307.                     | 9.6 | 16        |
| 134 | The microenvironment in lymphomas – Dissecting the complex crosstalk between tumor cells and<br>â€~by-stander' cells. Seminars in Cancer Biology, 2014, 24, 1-2.                                                | 9.6 | 16        |
| 135 | ATM mutations in major stereotyped subsets of chronic lymphocytic leukemia: enrichment in subset #2 is associated with markedly short telomeres. Haematologica, 2016, 101, e369-e373.                           | 3.5 | 16        |
| 136 | No improvement in long-term survival over time for chronic lymphocytic leukemia patients in<br>stereotyped subsets #1 and #2 treated with chemo(immuno)therapy. Haematologica, 2018, 103, e158-e161.            | 3.5 | 16        |
| 137 | Genome-wide promoter methylation of hairy cell leukemia. Blood Advances, 2019, 3, 384-396.                                                                                                                      | 5.2 | 16        |
| 138 | DNA methylation profiles in chronic lymphocytic leukemia patients treated with chemoimmunotherapy. Clinical Epigenetics, 2019, 11, 177.                                                                         | 4.1 | 15        |
| 139 | A Study Protocol for Validation and Implementation of Whole-Genome and -Transcriptome<br>Sequencing as a Comprehensive Precision Diagnostic Test in Acute Leukemias. Frontiers in Medicine,<br>2022, 9, 842507. | 2.6 | 15        |
| 140 | Identification of B-cell lymphoma subsets by plasma protein profiling using recombinant antibody<br>microarrays. Leukemia Research, 2014, 38, 682-690.                                                          | 0.8 | 14        |
| 141 | Mantle cell lymphoma displays a homogenous methylation profile: A comparative analysis with chronic lymphocytic leukemia. American Journal of Hematology, 2012, 87, 361-367.                                    | 4.1 | 13        |
| 142 | Molecular Evidence for Antigen Drive in the Natural History of Mantle Cell Lymphoma. American<br>Journal of Pathology, 2015, 185, 1740-1748.                                                                    | 3.8 | 13        |
| 143 | Flow Cytometric Measurement of Blood Cells with BCR-ABL1 Fusion Protein in Chronic Myeloid<br>Leukemia. Scientific Reports, 2017, 7, 623.                                                                       | 3.3 | 13        |
| 144 | The Number of Signaling Pathways Altered by Driver Mutations in Chronic Lymphocytic Leukemia<br>Impacts Disease Outcome. Clinical Cancer Research, 2020, 26, 1507-1515.                                         | 7.0 | 13        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Precision diagnostics in lymphomas – Recent developments and future directions. Seminars in Cancer<br>Biology, 2022, 84, 170-183.                                                                             | 9.6 | 13        |
| 146 | <i>RPS15</i> mutations rewire RNA translation in chronic lymphocytic leukemia. Blood Advances, 2021, 5, 2788-2792.                                                                                            | 5.2 | 12        |
| 147 | Immunoglobulin VH gene replacements in a T-cell lymphoblastic lymphoma. Molecular Immunology,<br>1997, 34, 305-313.                                                                                           | 2.2 | 11        |
| 148 | Temporal Dynamics of Clonal Evolution in Chronic Lymphocytic Leukemia with Stereotyped<br>IGHV4-34/IGKV2-30 Antigen Receptors: Longitudinal Immunogenetic Evidence. Molecular Medicine, 2013,<br>19, 230-236. | 4.4 | 11        |
| 149 | Numerous Ontogenetic Roads to Mantle Cell Lymphoma. American Journal of Pathology, 2017, 187, 1454-1458.                                                                                                      | 3.8 | 11        |
| 150 | RNA-based markers as prognostic factors in chronic lymphocytic leukemia. Expert Review of<br>Hematology, 2012, 5, 69-79.                                                                                      | 2.2 | 10        |
| 151 | Possible Interaction Between Cigarette Smoking and HLA-DRB1 Variation in the Risk of Follicular<br>Lymphoma. American Journal of Epidemiology, 2017, 185, 681-687.                                            | 3.4 | 10        |
| 152 | Clinical and functional impact of recurrent S1PR1 mutations in mantle cell lymphoma. Blood<br>Advances, 2018, 2, 621-625.                                                                                     | 5.2 | 10        |
| 153 | Inhibition of EZH2 and immune signaling exerts synergistic antitumor effects in chronic lymphocytic<br>leukemia. Blood Advances, 2019, 3, 1891-1896.                                                          | 5.2 | 10        |
| 154 | Comparative analysis of targeted next-generation sequencing panels for the detection of gene<br>mutations in chronic lymphocytic leukemia: an ERIC multi-center study. Haematologica, 2021, 106,<br>682-691.  | 3.5 | 10        |
| 155 | The international Prognostic Index for patients with CLL (CLL-IPI): An international meta-analysis<br>Journal of Clinical Oncology, 2015, 33, 7002-7002.                                                      | 1.6 | 10        |
| 156 | Exploring the genetic landscape in chronic lymphocytic leukemia using high-resolution technologies.<br>Leukemia and Lymphoma, 2013, 54, 1583-1590.                                                            | 1.3 | 9         |
| 157 | Feasibility of targeted next-generation sequencing of the TP53 and ATM genes in chronic lymphocytic leukemia. Leukemia, 2014, 28, 694-696.                                                                    | 7.2 | 9         |
| 158 | Silenced B-cell receptor response to autoantigen in a poor-prognostic subset of chronic lymphocytic<br>leukemia. Haematologica, 2014, 99, 1722-1730.                                                          | 3.5 | 9         |
| 159 | Automated shape-based clustering of 3D immunoglobulin protein structures in chronic lymphocytic leukemia. BMC Bioinformatics, 2018, 19, 414.                                                                  | 2.6 | 9         |
| 160 | Towards precision medicine in lymphoid malignancies. Journal of Internal Medicine, 2022, 292, 221-242.                                                                                                        | 6.0 | 9         |
| 161 | Patient-Specific Assays Based on Whole-Genome Sequencing Data to Measure Residual Disease in<br>Children With Acute Lymphoblastic Leukemia: A Proof of Concept Study. Frontiers in Oncology, 0, 12, .         | 2.8 | 9         |
| 162 | A novel ex vivo high-throughput assay reveals antiproliferative effects of idelalisib and ibrutinib in chronic lymphocytic leukemia. Oncotarget, 2018, 9, 26019-26031.                                        | 1.8 | 8         |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | MyPal ADULT study protocol: a randomised clinical trial of the MyPal ePRO-based early palliative care system in adult patients with haematological malignancies. BMJ Open, 2021, 11, e050256.                                                                     | 1.9 | 8         |
| 164 | Response: high ERG gene expression is an unfavorable prognostic marker in pediatric acute myeloid<br>leukemia. Blood, 2012, 119, 1087-1088.                                                                                                                       | 1.4 | 7         |
| 165 | Antigens in lymphoma development—Current knowledge and future directions. Seminars in Cancer<br>Biology, 2013, 23, 397-398.                                                                                                                                       | 9.6 | 6         |
| 166 | Clonal evolution in chronic lymphocytic leukemia: impact of subclonality on disease progression.<br>Expert Review of Hematology, 2015, 8, 71-78.                                                                                                                  | 2.2 | 6         |
| 167 | Immunoglobulin Gene Sequence Analysis In Chronic Lymphocytic Leukemia: From Patient Material To<br>Sequence Interpretation. Journal of Visualized Experiments, 2018, , .                                                                                          | 0.3 | 6         |
| 168 | Introduction: Epigenetics in cancer. Seminars in Cancer Biology, 2018, 51, iv-v.                                                                                                                                                                                  | 9.6 | 6         |
| 169 | Riskâ€adapted bendamustineÂ+Ârituximab is a tolerable treatment alternative for elderly patients with<br>chronic lymphocytic leukaemia: a regional realâ€world report on 141 consecutive Swedish patients.<br>British Journal of Haematology, 2020, 191, 426-432. | 2.5 | 6         |
| 170 | T Cell Receptor Gene Repertoire Restriction in Chronic Lymphocytic Leukemia with Stereotyped<br>IGHV4–34/IGKV2–30 Antigen Receptors. Blood, 2012, 120, 3908-3908.                                                                                                 | 1.4 | 6         |
| 171 | Strikingly Homologous Immunoglobulin Gene Rearrangements and Poor Outcome in VH3-21-Utilizing<br>Chronic Lymphocytic Leukemia Independent of Geographical Origin and Mutational Status Blood,<br>2005, 106, 175-175.                                              | 1.4 | 6         |
| 172 | International validation of the <scp>EORTC QLQâ€CLL17</scp> questionnaire for assessment of<br>healthâ€related quality of life for patients with chronic lymphocytic leukaemia. British Journal of<br>Haematology, 2022, 197, 431-441.                            | 2.5 | 6         |
| 173 | Introduction: the role of inflammation, autoimmune disease and infectious agents in development of leukaemia and lymphoma. Journal of Internal Medicine, 2008, 264, 512-513.                                                                                      | 6.0 | 5         |
| 174 | Different time-dependent changes of risk for evolution in chronic lymphocytic leukemia with mutated or unmutated antigen B cell receptors. Leukemia, 2019, 33, 1801-1805.                                                                                         | 7.2 | 5         |
| 175 | Consistent B Cell Receptor Immunoglobulin Features Between Siblings in Familial Chronic<br>Lymphocytic Leukemia. Frontiers in Oncology, 2021, 11, 740083.                                                                                                         | 2.8 | 5         |
| 176 | Identifying patients with chronic lymphocytic leukemia without need of treatment: End of endless watch and wait?. European Journal of Haematology, 2022, 108, 369-378.                                                                                            | 2.2 | 5         |
| 177 | Precision medicine in cancer: A paradigm shift. Seminars in Cancer Biology, 2022, 84, 1-2.                                                                                                                                                                        | 9.6 | 5         |
| 178 | Alterations of the Immunoglobulin Heavy Chain Locus in Progressive B-cell Lymphomas. Acta<br>Oncológica, 1998, 37, 193-200.                                                                                                                                       | 1.8 | 4         |
| 179 | An Entity Evolving into a Community: Defining the Common Ancestor and Evolutionary Trajectory of<br>Chronic Lymphocytic Leukemia Stereotyped Subset #4. Molecular Medicine, 2014, 20, 720-728.                                                                    | 4.4 | 4         |
| 180 | B-cell malignancies: All roads lead to NF-κB activation. Seminars in Cancer Biology, 2016, 39, 1-2.                                                                                                                                                               | 9.6 | 4         |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Expression of GNAZ , encoding the Gα z protein, predicts survival in mantle cell lymphoma. British<br>Journal of Haematology, 2019, 185, 708-712.                                                                                               | 2.5 | 4         |
| 182 | Screening for Copy Number Alterations and Loss of Heterozygosity in Chronic Lymphocytic Leukemia -<br>A Comparative Study of Four Differently Designed, High Resolution Microarray Platforms Blood,<br>2007, 110, 2084-2084.                    | 1.4 | 4         |
| 183 | LPL Is the Strongest Prognostic Factor in a Comparative Study of RNA-Based Markers in Chronic<br>Lymphocytic Leukemia Blood, 2009, 114, 1254-1254.                                                                                              | 1.4 | 4         |
| 184 | Chronic Lymphocytic Leukemia Patients with IGHV Genes Carrying Only Silent Mutations Have A Longer<br>Time From Diagnosis to Initial Therapy Than Patients Expressing B-Cell Receptors with No Somatic<br>Mutations. Blood, 2011, 118, 288-288. | 1.4 | 3         |
| 185 | Genome-Wide Methylation Arrays Reveal Distinct Methylation Profiles in Prognostic Subsets of<br>Chronic Lymphocytic Leukemia Blood, 2009, 114, 364-364.                                                                                         | 1.4 | 3         |
| 186 | Low rate of somatic hypermutations characterize progressive Bâ€cell lymphomas. European Journal of<br>Haematology, 1998, 61, 164-172.                                                                                                           | 2.2 | 2         |
| 187 | New insights into the pathobiology of chronic lymphocytic leukemia. Journal of Hematopathology, 2011, 4, 149-163.                                                                                                                               | 0.4 | 2         |
| 188 | MDM2 promotor polymorphism and disease characteristics in chronic lymphocytic leukemia: results of an individual patient data-based meta-analysis. Haematologica, 2014, 99, 1285-1291.                                                          | 3.5 | 2         |
| 189 | DRUG PERTURBATION BASED STRATIFICATION OF LYMPHOPROLIFERATIVE DISORDERS. Hematological Oncology, 2017, 35, 56-56.                                                                                                                               | 1.7 | 2         |
| 190 | Immunoglobulin Gene Analysis in Chronic Lymphocytic Leukemia. Methods in Molecular Biology, 2019,<br>1881, 51-62.                                                                                                                               | 0.9 | 2         |
| 191 | Sequence-Based Evidence for Antigen Selection in Mantle Cell Lymphoma: Remarkable Immunoglobulin<br>Gene Repertoire Biases, Stereotyped Antigen-Binding Sites and Recurrent Hypermutations in Certain<br>Subsets Blood, 2009, 114, 1933-1933.   | 1.4 | 2         |
| 192 | The Composition of the B Cell Receptor Repertoire In 7428 Cases of Chronic Lymphocytic Leukemia: One<br>Third Stereotyped, Two Thirds Heterogeneous - What Does This Mean?. Blood, 2010, 116, 43-43.                                            | 1.4 | 2         |
| 193 | Diffuse Large B-Cell Lymphoma (DLBCL) Tumor Cells Reprogram Lymphatic Fibroblasts into<br>Cancer-Associated Fibroblasts (CAFs) That Contribute to Tumor Microenvironment (TME)-Driven<br>Immune Privilege. Blood, 2015, 126, 1474-1474.         | 1.4 | 2         |
| 194 | Unique Versus Common: Disease-Biased Immunoglobulin Gene Repertoires Along with Public Antigen<br>Receptor Stereotypes in Marginal Zone B-Cell Lymphoproliferations. Blood, 2015, 126, 1479-1479.                                               | 1.4 | 2         |
| 195 | Reproducible Diagnosis of Chronic Lymphocytic Leukemia (CLL) By Flow Cytometry: An European<br>Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA)<br>Harmonisation Project. Blood, 2015, 126, 4146-4146.   | 1.4 | 2         |
| 196 | Transcriptome sequencing of archived lymphoma specimens is feasible and clinically relevant using exome capture technology. Genes Chromosomes and Cancer, 2022, 61, 27-36.                                                                      | 2.8 | 2         |
| 197 | INTERNATIONAL PROGNOSTIC SCORE FOR EARLY STAGE CHRONIC LYMPHOCYTIC LEUKEMIA (IPS-A).<br>Hematological Oncology, 2019, 37, 81-82.                                                                                                                | 1.7 | 1         |
| 198 | p66Shc deficiency sets the scene for clinically aggressive chronic lymphocytic leukemia.<br>Haematologica, 2019, 104, 1914-1916.                                                                                                                | 3.5 | 1         |

| #   | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Concordance in survival among firstâ€degree relatives diagnosed with indolent lymphoid malignancies<br>including chronic lymphocytic leukemia. European Journal of Haematology, 2020, 105, 779-785.                                                                  | 2.2  | 1         |
| 200 | Discordant Reporting of a Previously Undescribed Pathogenic Germline BRCA2 Variant in Blood and<br>Tumor Tissue in a Patient With Pancreatic Adenocarcinoma. JCO Precision Oncology, 2021, 5, 974-980.                                                               | 3.0  | 1         |
| 201 | Molecular diagnostics and reporting in lymphoid malignancies: Current status and beyond.<br>Hematological Oncology, 2021, 39, 73-77.                                                                                                                                 | 1.7  | 1         |
| 202 | Mutations known from B-cell lymphoid malignancies are not found in CD34 <sup>+</sup> stem cells from patients with lymphoma. Leukemia and Lymphoma, 2021, 62, 2808-2811.                                                                                             | 1.3  | 1         |
| 203 | DNA Copy Number Gains of TCF4 (E2-2) Are Associated with Poor Outcome in Diffuse Large B-Cell<br>Lymphoma. Blood, 2016, 128, 2686-2686.                                                                                                                              | 1.4  | 1         |
| 204 | Reappraising Immunoglobulin Repertoire Restrictions in Chronic Lymphocytic Leukemia: Focus on<br>Major Stereotyped Subsets and Closely Related Satellites. Blood, 2016, 128, 4376-4376.                                                                              | 1.4  | 1         |
| 205 | SNP-Arrays Provide New Insights Into the Pathogenesis of Richter Syndrome (RS). Blood, 2011, 118, 263-263.                                                                                                                                                           | 1.4  | 1         |
| 206 | Prognostic Assessment In Patients With Chronic Lymphocytic Leukemia (CLL) In Clinical Practice: A<br>European Research Initiative On CLL (ERIC) Survey. Blood, 2013, 122, 4156-4156.                                                                                 | 1.4  | 1         |
| 207 | Higher Order Restrictions of the Immunoglobulin Repertoire in CLL: The Illustrative Case of Stereotyped Subsets #2 and #169. Blood, 2019, 134, 5453-5453.                                                                                                            | 1.4  | 1         |
| 208 | Different Prognostic Impact of Recurrent Gene Mutations in IGHV-Mutated and IGHV-Unmutated<br>Chronic Lymphocytic Leukemia: A Retrospective, Multi-Center Cohort Study By Eric, the European<br>Research Initiative on CLL, in Harmony. Blood, 2021, 138, 2617-2617. | 1.4  | 1         |
| 209 | A new piece to the stereotypy "puzzle―in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2015, 56, 3008-3009.                                                                                                                                                   | 1.3  | 0         |
| 210 | Unraveling the DNA Methylome in Mantle Cell Lymphoma: New Insights into the Cellular Origin.<br>Cancer Cell, 2016, 30, 665-667.                                                                                                                                      | 16.8 | 0         |
| 211 | Introduction to the symposium †Targeted therapy in Bâ€cell malignancies'. Journal of Internal Medicine,<br>2017, 282, 358-359.                                                                                                                                       | 6.0  | 0         |
| 212 | Identification and gene expression analysis of the side population subclone in mantle cell lymphoma.<br>Hematological Oncology, 2017, 35, 284-284.                                                                                                                   | 1.7  | 0         |
| 213 | Assessing Patients' Knowledge on Chronic Lymphocytic Leukemia: Validation of the ERIC CLL<br>Knowledge Questionnaire in Greece. HemaSphere, 2021, 5, e546.                                                                                                           | 2.7  | 0         |
| 214 | Telomere Length as a Prognostic Parameter in Chronic Lymphocytic Leukemia with Reference to IGV(H)<br>Gene Mutation Status Blood, 2004, 104, 4795-4795.                                                                                                              | 1.4  | 0         |
| 215 | Short Telomeres Are Associated with Genetic Instability and the Occurrence of High Risk Genomic Aberrations in Chronic Lymphocytic Leukemia Blood, 2005, 106, 1178-1178.                                                                                             | 1.4  | 0         |
| 216 | Stereotyped Patterns of Somatic Hypermutation (SHM) in Subsets of Patients with Chronic<br>Lymphocytic Leukemia (CLL): Implications for the Role of Antigen Selection in Leukemogenesis Blood,<br>2007, 110, 744-744.                                                | 1.4  | 0         |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Evidence for the Significant Role of Immunoglobulin Light Chains in Antigen Recognition and<br>Selection in Chronic Lymphocytic Leukemia. Blood, 2008, 112, 780-780.                                                                               | 1.4 | 0         |
| 218 | A Different Ontogenesis for CLL Cases Carrying Stereotyped Antigen Receptors: Molecular and Computational Evidence. Blood, 2008, 112, 777-777.                                                                                                     | 1.4 | 0         |
| 219 | High Resolution Screening of Copy-Number Alterations in Chronic Lymphocytic Leukemia Using<br>Affymetrix 250K SNP-Arrays Reveals a Higher Complexity of Genomic Alterations in Patients with<br>Unmutated IGHV Genes. Blood, 2008, 112, 3133-3133. | 1.4 | 0         |
| 220 | Lymphomas in Rheumatoid Arthritis Patients Treated with Anti-TNF Therapy: A Report from the Swedish<br>Biologics Register (ARTIS) and the ARTIS Study Group 1998–2006. Blood, 2008, 112, 3754-3754.                                                | 1.4 | 0         |
| 221 | Apoptosis Gene Expression Profiling in Chronic Lymphocytic Leukemia Using Multiplex<br>Ligation-Dependent Probe Amplification Blood, 2009, 114, 3457-3457.                                                                                         | 1.4 | Ο         |
| 222 | Implications On Drug Resistance and Survival of ABCB1 Single Nucleotide Polymorphisms in Normal<br>Karyotype De Novo AML Blood, 2009, 114, 2648-2648.                                                                                              | 1.4 | 0         |
| 223 | Relapsed Childhood High Hyperdiploid Acute Lymphoblastic Leukemia: Genome-Wide Screening Reveals<br>the Presence of Preleukemic Ancestral Clones and the Secondary Nature of Microdeletions and<br>RTK-RAS Mutations Blood, 2009, 114, 2591-2591.  | 1.4 | 0         |
| 224 | Chronic Lymphocytic Leukemia with Stereotyped IGHV4-59/IGKV3-20 B Cell Receptors: Another<br>Manifestation of Hepatitis C Virus-Associated B Cell Lymphoproliferation? Blood, 2009, 114, 2331-2331.                                                | 1.4 | 0         |
| 225 | Extensive Intraclonal Diversification in a Subgroup of Chronic Lymphocytic Leukemia Patients with<br>Stereotyped IGHV4-34/IGKV2-30 B cell Receptors: Implications for Ongoing Interactions with Antigen<br>Blood, 2009, 114, 2337-2337.            | 1.4 | Ο         |
| 226 | Genome-Wide Array-Based Methylation Profiling Reveals Preferential Methylation of Homeobox<br>Transcription Factor Genes In Mantle Cell Lymphoma and Pro-Apoptotic Genes In Chronic Lymphocytic<br>Leukemia. Blood, 2010, 116, 536-536.            | 1.4 | 0         |
| 227 | Novel Gene Mutations In Chronic Lymphocytic Leukemia: Prevalence and Clinical Implications In A<br>Series Of 3185 Cases - Initial Results From The European Research Initiative On CLL. Blood, 2013, 122,<br>1614-1614.                            | 1.4 | 0         |
| 228 | An Innovative High-Throughput Ex Vivo Drug Assay Incorporating the Native Microenvironment<br>Reveals a Novel Mechanism of Action of Idelalisib in CLL. Blood, 2015, 126, 2485-2485.                                                               | 1.4 | 0         |
| 229 | ATM Mutations in Major Stereotyped CLL Subsets: Enrichment in Subset #2 is Associated with Unfavourable Outcome. Blood, 2015, 126, 1712-1712.                                                                                                      | 1.4 | Ο         |
| 230 | Genomic Disruption of the Histone Methyltransferase SETD2 in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 365-365.                                                                                                                              | 1.4 | 0         |
| 231 | Personalized Modeling of Disease Evolution in CLL: Does Statistical Significance Translate into Predictive Accuracy?. Blood, 2015, 126, 2921-2921.                                                                                                 | 1.4 | Ο         |
| 232 | CLL with Mutated IGHV4-34 Antigen Receptors Is Clinically Heterogeneous: Antigen Receptor Stereotypy<br>Makes the Difference. Blood, 2015, 126, 5263-5263.                                                                                         | 1.4 | 0         |
| 233 | Specific T Cell Receptor Gene Repertoire Profiles in Subgroups of CLL Patients with Distinct Genomic Aberrations. Blood, 2021, 138, 3749-3749.                                                                                                     | 1.4 | 0         |
| 234 | Proteogenomic Subtyping of Chronic Lymphocytic Leukemia Identifies a Novel Poor Outcome Subgroup<br>with a Distinct Drug Response Profile. Blood, 2020, 136, 10-11.                                                                                | 1.4 | 0         |