Hsou-min Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2496035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>TIC236</i> gain-of-function mutations unveil the link between plastid division and plastid protein import. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123353119.	3.3	8
2	A CHLORAD way to turn red. Nature Plants, 2021, 7, 550-551.	4.7	3
3	Chloroplast import of an intermembrane space protein is facilitated by translocon components Toc75 and Tic236. Plant Direct, 2021, 5, e356.	0.8	1
4	Tissue-Specific Regulation of Plastid Protein Import via Transit-Peptide Motifs. Plant Cell, 2020, 32, 1204-1217.	3.1	28
5	Increased ratio of galactolipid MGDGÂ:ÂDGDG induces jasmonic acid overproduction and changes chloroplast shape. New Phytologist, 2020, 228, 1327-1335.	3.5	30
6	Protein Import Motors in Chloroplasts: On the Role of Chaperones. Plant Cell, 2020, 32, 536-542.	3.1	21
7	Chloroplast Galactolipids: The Link Between Photosynthesis, Chloroplast Shape, Jasmonates, Phosphate Starvation and Freezing Tolerance. Plant and Cell Physiology, 2018, 59, 1128-1134.	1.5	42
8	TIC236 links the outer and inner membrane translocons of the chloroplast. Nature, 2018, 564, 125-129.	13.7	59
9	Developmental regulation of protein import into plastids. Photosynthesis Research, 2018, 138, 327-334.	1.6	23
10	Chloroplast Preproteins Bind to the Dimer Interface of the Toc159 Receptor during Import. Plant Physiology, 2017, 173, 2148-2162.	2.3	7
11	Stable megadalton <scp>TOC</scp> – <scp>TIC</scp> supercomplexes as major mediators of protein import into chloroplasts. Plant Journal, 2017, 92, 178-188.	2.8	38
12	Polypeptide Transport-Associated Domains of the Toc75 Channel Protein Are Located in the Intermembrane Space of Chloroplasts. Plant Physiology, 2016, 172, 235-243.	2.3	30
13	Chloroplast Hsp93 Directly Binds to Transit Peptides at an Early Stage of the Preprotein Import Process. Plant Physiology, 2016, 170, 857-866.	2.3	39
14	Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis. Plant Cell, 2016, 28, 219-232.	3.1	56
15	Protein import into isolated pea root leucoplasts. Frontiers in Plant Science, 2015, 6, 690.	1.7	15
16	Transit peptide design and plastid import regulation. Trends in Plant Science, 2013, 18, 360-366.	4.3	71
17	Structural characterizations of the chloroplast translocon protein <scp><scp>Tic110</scp></scp> . Plant Journal, 2013, 75, 847-857.	2.8	29
18	Evolution of Chloroplast J Proteins. PLoS ONE, 2013, 8, e70384.	1.1	31

Hsou-min Li

#	Article	IF	CITATIONS
19	Structural characterizations of chloroplast translocon protein Tic110. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s312-s312.	0.3	0
20	Differential Age-Dependent Import Regulation by Signal Peptides. PLoS Biology, 2012, 10, e1001416.	2.6	60
21	The Amino-Terminal Domain of Chloroplast Hsp93 Is Important for Its Membrane Association and Functions in Vivo Â. Plant Physiology, 2012, 158, 1656-1665.	2.3	22
22	Determining the Location of an Arabidopsis Chloroplast Protein Using In Vitro Import Followed by Fractionation and Alkaline Extraction. Methods in Molecular Biology, 2011, 774, 339-350.	0.4	19
23	Pea Chloroplast DnaJ-J8 and Toc12 Are Encoded by the Same Gene and Localized in the Stroma. Plant Physiology, 2010, 154, 1172-1182.	2.3	25
24	Stromal Hsp70 Is Important for Protein Translocation into Pea and <i>Arabidopsis</i> Chloroplasts Â. Plant Cell, 2010, 22, 1516-1531.	3.1	168
25	Protein Transport into Chloroplasts. Annual Review of Plant Biology, 2010, 61, 157-180.	8.6	255
26	Arabidopsis CHLI2 Can Substitute for CHLI1 Â Â Â. Plant Physiology, 2009, 150, 636-645.	2.3	83
27	Tic40 is important for reinsertion of proteins from the chloroplast stroma into the inner membrane. Plant Journal, 2008, 56, 793-801.	2.8	39
28	Arabidopsis Stromal 70-kD Heat Shock Proteins Are Essential for Plant Development and Important for Thermotolerance of Germinating Seeds Â. Plant Physiology, 2008, 146, 1231-1241.	2.3	242
29	Dimerization Is Important for the GTPase Activity of Chloroplast Translocon Components atToc33 and psToc159. Journal of Biological Chemistry, 2007, 282, 13845-13853.	1.6	45
30	Toc GTPases. Journal of Biomedical Science, 2007, 14, 505-508.	2.6	22
31	Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts. Plant Journal, 2006, 49, 149-158.	2.8	56
32	Tic21 Is an Essential Translocon Component for Protein Translocation across the Chloroplast Inner Envelope Membrane. Plant Cell, 2006, 18, 2247-2257.	3.1	160
33	Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. Journal of Cell Biology, 2006, 175, 893-900.	2.3	107
34	A Copper Chaperone for Superoxide Dismutase That Confers Three Types of Copper/Zinc Superoxide Dismutase Activity in Arabidopsis. Plant Physiology, 2005, 139, 425-436.	2.3	147
35	Signal Peptide-Dependent Targeting of a Rice α-Amylase and Cargo Proteins to Plastids and Extracellular Compartments of Plant Cells. Plant Physiology, 2004, 135, 1367-1377.	2.3	104
36	Import Pathways of Chloroplast Interior Proteins and the Outer-Membrane Protein OEP14 Converge at Toc75. Plant Cell, 2004, 16, 2078-2088.	3.1	104

Hsou-min Li

#	Article	IF	CITATIONS
37	Characterization of Arabidopsis Glutamine Phosphoribosyl Pyrophosphate Amidotransferase-Deficient Mutants. Plant Physiology, 2004, 135, 1314-1323.	2.3	53
38	Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO Journal, 2003, 22, 2970-2980.	3.5	174
39	Crystal structure of pea Toc34, a novel GTPase of the chloroplast protein translocon. Nature Structural Biology, 2002, 9, 95-100.	9.7	110
40	Leaf-Specific Upregulation of Chloroplast Translocon Genes by a CCT Motif–Containing Protein, CIA 2. Plant Cell, 2001, 13, 2053-2061.	3.1	36
41	Chloroplast Protein Translocon Components atToc159 and atToc33 Are Not Essential for Chloroplast Biogenesis in Guard Cells and Root Cells. Plant Physiology, 2001, 127, 90-96.	2.3	48
42	Insertion of OEP14 into the Outer Envelope Membrane Is Mediated by Proteinaceous Components of Chloroplasts. Plant Cell, 2000, 12, 1951.	3.1	1
43	Insertion of OEP14 into the Outer Envelope Membrane Is Mediated by Proteinaceous Components of Chloroplasts. Plant Cell, 2000, 12, 1951-1959.	3.1	43
44	Insertion of atToc34 into the Chloroplastic Outer Membrane Is Assisted by at Least Two Proteinaceous Components in the Import System. Journal of Biological Chemistry, 1999, 274, 18735-18740.	1.6	38
45	A mutant deficient in the plastid lipid DGD is defective in protein import into chloroplasts. Plant Journal, 1998, 16, 33-39.	2.8	66
46	An Arabidopsis Mutant Defective in the Plastid General Protein Import Apparatus. , 1998, 282, 100-103.		301
47	Protein Targeting to the Chloroplast Outer Membrane. , 1998, , 3069-3073.		0
48	A Novel Chloroplastic Outer Membrane-targeting Signal That Functions at Both Termini of Passenger Polypeptides. Journal of Biological Chemistry, 1997, 272, 10968-10974.	1.6	50
49	Protein Targeting and Integration Signal for the Chloroplastic Outer Envelope Membrane. Plant Cell, 1996, 8, 2117.	3.1	13
50	Targeting of proteins into chloroplasts. Physiologia Plantarum, 1995, 93, 157-162.	2.6	23
51	CUE1: A Mesophyll Cell-Specific Positive Regulator of Light-Controlled Gene Expression in Arabidopsis. Plant Cell, 1995, 7, 1599.	3.1	68
52	Chapter 31 Molecular Methods for Isolation of Signal Transduction Pathway Mutants. Methods in Cell Biology, 1995, 49, 441-454.	0.5	3
53	Molecular cloning of a chloroplastic proteinassociated with both the envelope and thylakoid membranes. Plant Molecular Biology, 1994, 25, 619-632.	2.0	96
54	Regulation of gene expression by light. Current Opinion in Cell Biology, 1993, 5, 455-460.	2.6	31

#	Article	IF	CITATIONS
55	Chapter 15 In Vitro Reconstitution of Protein Transport into Chloroplasts. Methods in Cell Biology, 1991, 34, 327-344.	0.5	73
56	Targeting of Proteins to the Outer Envelope Membrane Uses a Different Pathway than Transport into Chloroplasts. Plant Cell, 1991, 3, 709.	3.1	36