Rogério Pedro Pirraco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/249589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration. Acta Biomaterialia, 2022, 143, 282-294.	8.3	13
2	Mineralized collagen as a bioactive ink to support encapsulation of human adipose stem cells: A step towards the future of bone regeneration. Materials Science and Engineering C, 2022, 133, 112600.	7.3	5
3	A Novel Method for the Preparation of Poly (Acrylamide-co-Acrylonitrile) Upper Critical Solution Temperature Thermosensitive Hydrogel by the Partial Dehydration of Acrylamide Grafted Polypropylene Sheets. Gels, 2022, 8, 345.	4.5	3
4	Prionace glauca skin collagen bioengineered constructs as a promising approach to trigger cartilage regeneration. Materials Science and Engineering C, 2021, 120, 111587.	7.3	23
5	Rescuing key native traits in cultured dermal papilla cells for human hair regeneration. Journal of Advanced Research, 2021, 30, 103-112.	9.5	21
6	Interfollicular epidermal stem-like cells for the recreation of the hair follicle epithelial compartment. Stem Cell Research and Therapy, 2021, 12, 62.	5.5	13
7	Impact of dietary phosphorus on turbot bone mineral density and content. Aquaculture Nutrition, 2021, 27, 1128-1134.	2.7	3
8	A biocompatible and injectable hydrogel to boost the efficacy of stem cells in neurodegenerative diseases treatment. Life Sciences, 2021, 287, 120108.	4.3	8
9	Approach on chitosan/virgin coconut oil-based emulsion matrices as a platform to design superabsorbent materials. Carbohydrate Polymers, 2020, 249, 116839.	10.2	9
10	Cell-Laden Biomimetically Mineralized Shark-Skin-Collagen-Based 3D Printed Hydrogels for the Engineering of Hard Tissues. ACS Biomaterials Science and Engineering, 2020, 6, 3664-3672.	5.2	35
11	Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Advanced Materials, 2019, 31, e1902409.	21.0	173
12	Strategies for the hypothermic preservation of cell sheets of human adipose stem cells. PLoS ONE, 2019, 14, e0222597.	2.5	17
13	Preparation and characteristics of the sulfonated chitosan derivatives electrodeposited onto 316l stainless steel surface. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 236-256.	3.5	7
14	A thermo-/pH-responsive hydrogel (PNIPAM-PDMA-PAA) with diverse nanostructures and gel behaviors as a general drug carrier for drug release. Polymer Chemistry, 2018, 9, 4063-4072.	3.9	64
15	Stem Cells for Osteochondral Regeneration. Advances in Experimental Medicine and Biology, 2018, 1059, 219-240.	1.6	14
16	Marine Collagen/Apatite Composite Scaffolds Envisaging Hard Tissue Applications. Marine Drugs, 2018, 16, 269.	4.6	51
17	Skin in vitro models to study dermal white adipose tissue role in skin healing. , 2018, , 327-352.		0
18	In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomaterialia, 2017, 53, 483-494.	8.3	29

#	Article	IF	CITATIONS
19	Stem Cell-Containing Hyaluronic Acid-Based Spongy Hydrogels for Integrated Diabetic Wound Healing. Journal of Investigative Dermatology, 2017, 137, 1541-1551.	0.7	68
20	Eumelanin-releasing spongy-like hydrogels for skin re-epithelialization purposes. Biomedical Materials (Bristol), 2017, 12, 025010.	3.3	17
21	Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering. Materials Science and Engineering C, 2017, 78, 787-795.	7.3	52
22	Micellization and gelatinization in aqueous media of pH- and thermo-responsive amphiphilic ABC (PMMA ₈₂ -b-PDMAEMA ₁₅₀ -b-PNIPAM ₆₅) triblock copolymer synthesized by consecutive RAFT polymerization. RSC Advances, 2017, 7, 28711-28722.	3.6	36
23	Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy. Acta Biomaterialia, 2017, 55, 131-143.	8.3	34
24	Mastocarcinoma therapy synergistically promoted by lysosome dependent apoptosis specifically evoked by 5-Fu@nanogel system with passive targeting and pH activatable dual function. Journal of Controlled Release, 2017, 254, 107-118.	9.9	45
25	Nanostructured interfacial self-assembled peptide–polymer membranes for enhanced mineralization and cell adhesion. Nanoscale, 2017, 9, 13670-13682.	5.6	28
26	Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. European Polymer Journal, 2017, 95, 232-240.	5.4	46
27	Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Scientific Reports, 2016, 6, 21883.	3.3	62
28	Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products. ACS Applied Materials & Interfaces, 2016, 8, 33464-33474.	8.0	62
29	Growth Factor-Free Pre-vascularization of Cell Sheets for Tissue Engineering. Methods in Molecular Biology, 2016, 1516, 219-226.	0.9	6
30	Platelet lysate-based pro-angiogenic nanocoatings. Acta Biomaterialia, 2016, 32, 129-137.	8.3	27
31	Stem Cells in Skin Wound Healing: Are We There Yet?. Advances in Wound Care, 2016, 5, 164-175.	5.1	95
32	Depth (Z-axis) control of cell morphologies on micropatterned surfaces. Journal of Bioactive and Compatible Polymers, 2015, 30, 555-567.	2.1	2
33	Tissue Engineering: New Tools for Old Problems. Stem Cell Reviews and Reports, 2015, 11, 373-375.	5.6	6
34	Cell sheet technology-driven re-epithelialization and neovascularization of skin wounds. Acta Biomaterialia, 2014, 10, 3145-3155.	8.3	72
35	Bottom-up approach to construct microfabricated multi-layer scaffolds for bone tissue engineering. Biomedical Microdevices, 2014, 16, 69-78.	2.8	17
36	Gellan Gum-Hyaluronic Acid Spongy-like Hydrogels and Cells from Adipose Tissue Synergize Promoting Neoskin Vascularization. ACS Applied Materials & Interfaces, 2014, 6, 19668-19679.	8.0	94

Rocério Pedro Pirraco

#	Article	IF	CITATIONS
37	Human mesenchymal stem cells response to multi-doped silicon-strontium calcium phosphate coatings. Journal of Biomaterials Applications, 2014, 28, 1397-1407.	2.4	12
38	Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets. Laboratory Investigation, 2014, 94, 663-673.	3.7	36
39	Human Skin Cell Fractions Fail to Self-Organize Within a Gellan Gum/Hyaluronic Acid Matrix but Positively Influence Early Wound Healing. Tissue Engineering - Part A, 2014, 20, 1369-1378.	3.1	46
40	Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 392-400.	2.7	105
41	Adipose stem cell-derived osteoblasts sustain the functionality of endothelial progenitors from the mononuclear fraction of umbilical cord blood. Acta Biomaterialia, 2013, 9, 5234-5242.	8.3	12
42	Human Adipose Stem Cells Cell Sheet Constructs Impact Epidermal Morphogenesis in Full-Thickness Excisional Wounds. Biomacromolecules, 2013, 14, 3997-4008.	5.4	88
43	Human Adipose Tissue-Derived SSEA-4 Subpopulation Multi-Differentiation Potential Towards the Endothelial and Osteogenic Lineages. Tissue Engineering - Part A, 2013, 19, 235-246.	3.1	43
44	Fibroblasts regulate osteoblasts through gap junctional communication. Cytotherapy, 2012, 14, 1276-1287.	0.7	13
45	Perivascular-Like Cells Contribute to the Stability of the Vascular Network of Osteogenic Tissue Formed from Cell Sheet-Based Constructs. PLoS ONE, 2012, 7, e41051.	2.5	48
46	Development of Osteogenic Cell Sheets for Bone Tissue Engineering Applications. Tissue Engineering - Part A, 2011, 17, 1507-1515.	3.1	59
47	Cell interactions in bone tissue engineering. Journal of Cellular and Molecular Medicine, 2010, 14, 93-102.	3.6	43
48	Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles in Central Nervous Systemsâ€Regenerative Medicine: Effects on Neuron/Glial Cell Viability and Internalization Efficiency. Macromolecular Bioscience, 2010, 10, 1130-1140.	4.1	25
49	Surface Engineered Carboxymethylchitosan/Poly(amidoamine) Dendrimer Nanoparticles for Intracellular Targeting. Advanced Functional Materials, 2008, 18, 1840-1853.	14.9	56

50 Biocompatibility of starch-based polymers. , 2008, , 738-760.

3