Minghao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2495708/publications.pdf Version: 2024-02-01

Μινομλο Υμ

#	Article	IF	CITATIONS
1	Hydrogenated TiO ₂ Nanotube Arrays for Supercapacitors. Nano Letters, 2012, 12, 1690-1696.	4.5	1,226
2	Flexible solid-state supercapacitors: design, fabrication and applications. Energy and Environmental Science, 2014, 7, 2160.	15.6	1,156
3	Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Communications, 2013, 4, 1894.	5.8	1,041
4	Hâ€TiO ₂ @MnO ₂ //Hâ€TiO ₂ @C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials, 2013, 25, 267-272.	11.1	894
5	Oxygenâ€Deficient Hematite Nanorods as Highâ€Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Advanced Materials, 2014, 26, 3148-3155.	11.1	838
6	High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Letters, 2013, 13, 2628-2633.	4.5	691
7	Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters, 2014, 14, 2522-2527.	4.5	688
8	Solid‧tate Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability. Advanced Materials, 2014, 26, 2676-2682.	11.1	660
9	Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Letters, 2012, 12, 5376-5381.	4.5	627
10	Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi‧olid‧tate Zn–MnO ₂ Battery. Advanced Materials, 2017, 29, 1700274.	11.1	572
11	Nitrogenâ€Doped Co ₃ O ₄ Mesoporous Nanowire Arrays as an Additiveâ€Free Airâ€Cathode for Flexible Solidâ€State Zinc–Air Batteries. Advanced Materials, 2017, 29, 1602868.	11.1	428
12	Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Scientific Reports, 2013, 3, 1021.	1.6	427
13	Advanced Tiâ€Doped Fe ₂ O ₃ @PEDOT Core/Shell Anode for Highâ€Energy Asymmetric Supercapacitors. Advanced Energy Materials, 2015, 5, 1402176.	10.2	416
14	Flexible Znâ€lon Batteries: Recent Progresses and Challenges. Small, 2019, 15, e1804760.	5.2	412
15	A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth. Advanced Materials, 2015, 27, 3572-3578.	11.1	384
16	Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018, 47, 7426-7451.	18.7	384
17	Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy, 2014, 8, 255-263.	8.2	381
18	Ironâ€Based Supercapacitor Electrodes: Advances and Challenges. Advanced Energy Materials, 2016, 6, 1601053.	10.2	358

#	Article	IF	CITATIONS
19	An Ultrastable and Highâ€Performance Flexible Fiberâ€6haped Ni–Zn Battery based on a Ni–NiO Heterostructured Nanosheet Cathode. Advanced Materials, 2017, 29, 1702698.	11.1	314
20	A New Benchmark Capacitance for Supercapacitor Anodes by Mixedâ€Valence Sulfurâ€Doped V ₆ O _{13â^'<i>x</i>} . Advanced Materials, 2014, 26, 5869-5875.	11.1	305
21	Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie - International Edition, 2017, 56, 5454-5459.	7.2	292
22	Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Materials, 2014, 6, e129-e129.	3.8	284
23	3D MnO2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale, 2013, 5, 6790.	2.8	258
24	Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews, 2021, 50, 2388-2443.	18.7	255
25	Multiscale Pore Network Boosts Capacitance of Carbon Electrodes for Ultrafast Charging. Nano Letters, 2017, 17, 3097-3104.	4.5	251
26	A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage Devices. Journal of the American Chemical Society, 2020, 142, 19570-19578.	6.6	232
27	Dualâ€Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiberâ€Shaped Asymmetric Supercapacitors and Microbial Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 6762-6766.	7.2	230
28	Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Materials, 2019, 21, 154-161.	9.5	221
29	Flexible Ultrafast Aqueous Rechargeable Ni//Bi Battery Based on Highly Durable Singleâ€Crystalline Bismuth Nanostructured Anode. Advanced Materials, 2016, 28, 9188-9195.	11.1	220
30	Improving the Cycling Stability of Metal–Nitride Supercapacitor Electrodes with a Thin Carbon Shell. Advanced Energy Materials, 2014, 4, 1300994.	10.2	217
31	New Insights into the Operating Voltage of Aqueous Supercapacitors. Chemistry - A European Journal, 2018, 24, 3639-3649.	1.7	211
32	Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors. Journal of Materials Chemistry, 2012, 22, 13357.	6.7	207
33	Valenceâ€Optimized Vanadium Oxide Supercapacitor Electrodes Exhibit Ultrahigh Capacitance and Superâ€Long Cyclic Durability of 100 000 Cycles. Advanced Functional Materials, 2015, 25, 3534-3540.	7.8	200
34	TiO ₂ @C core–shell nanowires for high-performance and flexible solid-state supercapacitors. Journal of Materials Chemistry C, 2013, 1, 225-229.	2.7	192
35	A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Advanced Materials, 2019, 31, e1901478.	11.1	192
36	Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy, 2015, 11, 348-355.	8.2	180

#	Article	IF	CITATIONS
37	Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials, 2015, 27, 3085-3091.	11.1	177
38	Thin-Film Electrode-Based Supercapacitors. Joule, 2019, 3, 338-360.	11.7	171
39	Engineering Thin MoS ₂ Nanosheets on TiN Nanorods: Advanced Electrochemical Capacitor Electrode and Hydrogen Evolution Electrocatalyst. ACS Energy Letters, 2017, 2, 1862-1868.	8.8	167
40	Building Threeâ€Dimensional Graphene Frameworks for Energy Storage and Catalysis. Advanced Functional Materials, 2015, 25, 324-330.	7.8	156
41	Amorphous Cobalt Hydroxide with Superior Pseudocapacitive Performance. ACS Applied Materials & Interfaces, 2014, 6, 745-749.	4.0	155
42	Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 4634-4658.	5.2	154
43	Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy Applications. Journal of the American Chemical Society, 2020, 142, 12903-12915.	6.6	154
44	Water Surface Assisted Synthesis of Largeâ€Scale Carbon Nanotube Film for Highâ€Performance and Stretchable Supercapacitors. Advanced Materials, 2014, 26, 4724-4729.	11.1	148
45	Recent Smart Methods for Achieving Highâ€Energy Asymmetric Supercapacitors. Small Methods, 2018, 2, 1700230.	4.6	147
46	A Confinement Strategy for Stabilizing ZIFâ€Derived Bifunctional Catalysts as a Benchmark Cathode of Flexible Allâ€Solidâ€State Zinc–Air Batteries. Advanced Materials, 2018, 30, e1805268.	11.1	147
47	Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10825-10829.	5.2	145
48	Three dimensional architectures: design, assembly and application in electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 15792-15823.	5.2	135
49	Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. Journal of Power Sources, 2013, 239, 64-71.	4.0	121
50	Selfâ€Activating, Capacitive Anion Intercalation Enables Highâ€₽ower Graphite Cathodes. Advanced Materials, 2018, 30, e1800533.	11.1	121
51	An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution. Journal of Materials Chemistry C, 2014, 2, 8683-8690.	2.7	119
52	Titanium dioxide@polypyrrole core–shell nanowires for all solid-state flexible supercapacitors. Nanoscale, 2013, 5, 10806.	2.8	115
53	Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. Journal of Power Sources, 2014, 272, 946-953.	4.0	114
54	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	9.5	113

#	Article	IF	CITATIONS
55	Improving the photoelectrochemical and photocatalytic performance of CdO nanorods with CdS decoration. CrystEngComm, 2013, 15, 4212.	1.3	110
56	Oxygen Defect Modulated Titanium Niobium Oxide on Graphene Arrays: An Openâ€Door for Highâ€Performance 1.4 V Symmetric Supercapacitor in Acidic Aqueous Electrolyte. Advanced Functional Materials, 2018, 28, 1805618.	7.8	110
57	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 896-903.	7.2	108
58	Sulphur-doped Co ₃ O ₄ nanowires as an advanced negative electrode for high-energy asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10779-10785.	5.2	101
59	Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy and Environmental Science, 2020, 13, 2849-2855.	15.6	101
60	Interlayer gap widened $\hat{l}\pm$ -phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices. Nature Communications, 2020, 11, 1348.	5.8	100
61	A Stimulusâ€Responsive Zinc–lodine Battery with Smart Overcharge Selfâ€Protection Function. Advanced Materials, 2020, 32, e2000287.	11.1	97
62	Bifunctional Iron–Nickel Nitride Nanoparticles as Flexible and Robust Electrode for Overall Water Splitting. Electrochimica Acta, 2017, 247, 666-673.	2.6	92
63	Designing Carbon Based Supercapacitors with High Energy Density: A Summary of Recent Progress. Chemistry - A European Journal, 2018, 24, 7312-7329.	1.7	86
64	Enhanced photoactivity and stability of carbon and nitrogen co-treated ZnO nanorod arrays for photoelectrochemical water splitting. Journal of Materials Chemistry, 2012, 22, 14272.	6.7	85
65	Controllable Synthesis of Zn _{<i>x</i>} Cd _{1–<i>x</i>} S@ZnO Core–Shell Nanorods with Enhanced Photocatalytic Activity. Langmuir, 2012, 28, 10558-10564.	1.6	83
66	Recent advances and challenges of stretchable supercapacitors based on carbon materials. Science China Materials, 2016, 59, 475-494.	3.5	83
67	Ultrathin two-dimensional conjugated metal–organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chemical Science, 2020, 11, 7665-7671.	3.7	82
68	Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity. CrystEngComm, 2012, 14, 1850.	1.3	75
69	Dual-Redox-Sites Enable Two-Dimensional Conjugated Metal–Organic Frameworks with Large Pseudocapacitance and Wide Potential Window. Journal of the American Chemical Society, 2021, 143, 10168-10176.	6.6	75
70	Surface modulation of NiCo2O4 nanowire arrays with significantly enhanced reactivity for ultrahigh-energy supercapacitors. Chemical Engineering Journal, 2018, 352, 996-1003.	6.6	74
71	Hydrogen production from solar driven glucose oxidation over Ni(OH)2 functionalized electroreduced-TiO2 nanowire arrays. Green Chemistry, 2013, 15, 2434.	4.6	72
72	Dualâ€Đoped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber haped Asymmetric Supercapacitors and Microbial Fuel Cells. Angewandte Chemie, 2016, 128, 6874-6878.	1.6	70

#	Article	IF	CITATIONS
73	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today, 2021, 48, 176-197.	8.3	66
74	Surface engineering of carbon fiber paper for efficient capacitive energy storage. Journal of Materials Chemistry A, 2016, 4, 18639-18645.	5.2	63
75	Hierarchical CeO2 nanospheres as highly-efficient adsorbents for dye removal. New Journal of Chemistry, 2013, 37, 585.	1.4	62
76	Facile synthesis of large-area CeO 2 /ZnO nanotube arrays for enhanced photocatalytic hydrogen evolution. Journal of Power Sources, 2014, 247, 545-550.	4.0	60
77	Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie, 2017, 129, 5546-5551.	1.6	60
78	Interfacial Covalent Bonds Regulated Electronâ€Deficient 2D Black Phosphorus for Electrocatalytic Oxygen Reactions. Advanced Materials, 2021, 33, e2008752.	11.1	56
79	Redoxâ€Active Metaphosphateâ€Like Terminals Enable Highâ€Capacity MXene Anodes for Ultrafast Naâ€lon Storage. Advanced Materials, 2022, 34, e2108682.	11.1	52
80	Amino functionalization optimizes potential distribution: A facile pathway towards high-energy carbon-based aqueous supercapacitors. Nano Energy, 2019, 65, 103987.	8.2	50
81	Porous Pr(OH) ₃ Nanostructures as High-Efficiency Adsorbents for Dye Removal. Langmuir, 2012, 28, 11078-11085.	1.6	49
82	Porous MoO ₂ nanowires as stable and high-rate negative electrodes for electrochemical capacitors. Chemical Communications, 2017, 53, 3929-3932.	2.2	48
83	On-Chip Integration of a Covalent Organic Framework-Based Catalyst into a Miniaturized Zn–Air Battery with High Energy Density. ACS Energy Letters, 2021, 6, 2491-2498.	8.8	46
84	Monolithic three-dimensional graphene frameworks derived from inexpensive graphite paper as advanced anodes for microbial fuel cells. Journal of Materials Chemistry A, 2016, 4, 6342-6349.	5.2	45
85	Conductive membranes of EVA filled with carbon black and carbon nanotubes for flexible energy-storage devices. Journal of Materials Chemistry A, 2013, 1, 505-509.	5.2	41
86	Band transport by large Fröhlich polarons in MXenes. Nature Physics, 2022, 18, 544-550.	6.5	40
87	Vertical bismuth oxide nanosheets with enhanced crystallinity: promising stable anodes for rechargeable alkaline batteries. Journal of Materials Chemistry A, 2017, 5, 25539-25544.	5.2	35
88	Improving the Lithiumâ€Storage Properties of Selfâ€Grown Nickel Oxide: A Backâ€Up from TiO ₂ Nanoparticles. ChemElectroChem, 2015, 2, 1243-1248.	1.7	34
89	Nitrogen doped graphene paper as a highly conductive, and light-weight substrate for flexible supercapacitors. RSC Advances, 2014, 4, 51878-51883.	1.7	33
90	A Nonaqueous Naâ€Ion Hybrid Microâ€Supercapacitor with Wide Potential Window and Ultrahigh Areal Energy Density. Batteries and Supercaps, 2019, 2, 918-923.	2.4	30

#	Article	IF	CITATIONS
91	Tb(<scp>iii</scp>) postsynthetic functional coordination polymer coatings on ZnO micronanoarrays and their application in small molecule sensing. Journal of Materials Chemistry C, 2016, 4, 8466-8472.	2.7	27
92	One step cathodically electrodeposited [Tb ₂ (BDC) ₃ (H ₂ O) ₄] _n thin film as a luminescent probe for Cu ²⁺ detection. RSC Advances, 2014, 4, 58178-58183.	1.7	26
93	Scalable Manufacturing of MXene Films: Moving toward Industrialization. Matter, 2020, 3, 335-336.	5.0	21
94	Constructing Hydrophobic Interface with Closeâ€Packed Coordination Supramolecular Network for Long ycling and Dendriteâ€Free Znâ€Metal Batteries. Small, 2022, 18, e2107971.	5.2	21
95	Functional Electrolytes: Game Changers for Smart Electrochemical Energy Storage Devices. Small Science, 2022, 2, 2100080.	5.8	16
96	3D V ₃ O ₇ ·H ₂ O/Partially Exfoliated Carbon Nanotube Composites with Significantly Improved Lithium Storage Ability. Particle and Particle Systems Characterization, 2016, 33, 531-537.	1.2	15
97	Layered electrode materials for non-aqueous multivalent metal batteries. Journal of Materials Chemistry A, 2021, 9, 19317-19345.	5.2	15
98	Understanding the Role of Topotactic Anion Exchange in the Robust Cu Ion Storage of CuS _{1–<i>x</i>} Se _{<i>x</i>} . ACS Energy Letters, 2022, 7, 1835-1841.	8.8	13
99	Co ₃ O ₄ @Co Nanoparticles Embedded Porous Nâ€Rich Carbon Matrix for Efficient Oxygen Reduction. Particle and Particle Systems Characterization, 2017, 34, 1700074.	1.2	11
100	Interlayer Engineering of αâ€MoO ₃ Modulates Selective Hydronium Intercalation in Neutral Aqueous Electrolyte. Angewandte Chemie, 2021, 133, 909-916.	1.6	9
101	Structure engineering of van der Waals layered transition metal-containing compounds for aqueous energy storage. Materials Chemistry Frontiers, 2021, 5, 2996-3020.	3.2	4
102	Coupling electrode-redox electrolyte within carbon nanotube arrays for supercapacitors with suppressed self-discharge. Sustainable Materials and Technologies, 2021, 28, e00284.	1.7	3
103	Frontispiece: New Insights into the Operating Voltage of Aqueous Supercapacitors. Chemistry - A European Journal, 2018, 24, .	1.7	1
104	Facile assembly of layer-interlocked graphene heterostructures as flexible electrodes for Li-ion batteries. Faraday Discussions, 2021, 227, 321-331.	1.6	1
105	Semiconductor Nanowires and Nanowire Heterostructures for Supercapacitors. , 2013, , .		0
106	Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. , 2013, , .		0
107	Frontispiece: Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie - International Edition, 2017, 56,	7.2	0
108	Frontispiz: Boosting the Energy Density of Carbonâ€Based Aqueous Supercapacitors by Optimizing the Surface Charge. Angewandte Chemie, 2017, 129, .	1.6	0

#	Article	IF	CITATIONS
109	Frontispiece: Designing Carbon Based Supercapacitors with High Energy Density: A Summary of Recent Progress. Chemistry - A European Journal, 2018, 24, .	1.7	0