
Michel Cassir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2495623/publications.pdf Version: 2024-02-01

MICHEL CASSID

#	Article	IF	CITATIONS
1	Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A thermal, structural and morphological insight. Journal of Power Sources, 2011, 196, 5546-5554.	7.8	75
2	Gadolinia-doped ceria mixed with alkali carbonates for SOFC applications: II – An electrochemical insight. International Journal of Hydrogen Energy, 2012, 37, 19371-19379.	7.1	71
3	Strategies and new developments in the field of molten carbonates and high-temperature fuel cells in the carbon cycle. International Journal of Hydrogen Energy, 2012, 37, 19345-19350.	7.1	61
4	CO2 electrochemical reduction into CO or C in molten carbonates: a thermodynamic point of view. Electrochimica Acta, 2015, 160, 74-81.	5.2	58
5	Effect of Lithiation Potential and Cycling on Chemical and Morphological Evolution of Si Thin Film Electrode Studied by ToF-SIMS. ACS Applied Materials & Interfaces, 2014, 6, 13023-13033.	8.0	49
6	Thermodynamic and experimental approach of electrochemical reduction of CO2 in molten carbonates. International Journal of Hydrogen Energy, 2014, 39, 12330-12339.	7.1	48
7	Thermodynamic and electrochemical behavior of nickel in molten Li2CO3–Na2CO3 modified by addition of calcium carbonate. Journal of Electroanalytical Chemistry, 1998, 452, 127-137.	3.8	38
8	Title is missing!. Journal of Applied Electrochemistry, 2000, 30, 1405-1413.	2.9	37
9	Electrochemical deposition of Co3O4 thin layers in order to protect the nickel-based molten carbonate fuel cell cathode. Journal of Electroanalytical Chemistry, 2003, 548, 95-107.	3.8	36
10	Noninvasive Galvanic Skin Sensor for Early Diagnosis of Sudomotor Dysfunction: Application to Diabetes. IEEE Sensors Journal, 2012, 12, 456-463.	4.7	35
11	Identification and electrochemical characterization of in situ produced and added reduced oxygen species in molten Li2CO3 + K2CO3. Journal of Electroanalytical Chemistry, 1997, 433, 195-205.	3.8	34
12	Theoretical predictions vs. experimental measurements of the electrical conductivity of molten Li2CO3–K2CO3 modified by additives. International Journal of Hydrogen Energy, 2012, 37, 19357-19364.	7.1	32
13	La1.98NiO4±δ, a new cathode material for solid oxide fuel cell: Impedance spectroscopy study and compatibility with gadolinia-doped ceria and yttria-stabilized zirconia electrolytes. Electrochimica Acta, 2012, 75, 80-87.	5.2	32
14	Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1â^xCuxO4+l´ materials as new cathodes for solid oxide fuel cells. Electrochimica Acta, 2009, 54, 6341-6346.	5.2	30
15	Behavior of titanium species in molten Li2CO3–Na2CO3 and Li2CO3–K2CO3 under anodic and cathodic conditions. I – Thermodynamic predictions at 550–750°C. Electrochimica Acta, 1998, 43, 1991-2003.	5.2	28
16	Behaviour of titanium species in molten Li2CO3+Na2CO3 and Li2CO3+K2CO3 in the anodic conditions used in molten carbonate fuel cells. Journal of Electroanalytical Chemistry, 1999, 474, 9-15.	3.8	25
17	Chemical and electrochemical behaviour of Ni–Ti in the cathodic conditions used in molten carbonate fuel cells. Journal of Electroanalytical Chemistry, 2001, 503, 69-77.	3.8	24
18	Electrochemical Characterization of Nickel Electrodes in Phosphate and Carbonate Electrolytes in View of Assessing a Medical Diagnostic Device for the Detection of Early Diabetes. Electroanalysis, 2010, 22, 2483-2490.	2.9	24

MICHEL CASSIR

#	Article	IF	CITATIONS
19	TiO2 protective coating processed by Atomic Layer Deposition for the improvement of MCFC cathode. International Journal of Hydrogen Energy, 2013, 38, 13443-13452.	7.1	23
20	Mechanistic approach of the electrochemical reduction of CO2 into CO at a gold electrode in molten carbonates by cyclic voltammetry. International Journal of Hydrogen Energy, 2016, 41, 18706-18712.	7.1	22
21	Morphological, structural and electrochemical analysis of sputter-deposited ceria and titania coatings for MCFC application. Journal of Power Sources, 2006, 160, 821-826.	7.8	16
22	Electrochemical properties of Atomic layer deposition processed CeO2 as a protective layer for the molten carbonate fuel cell cathode. Electrochimica Acta, 2014, 140, 174-181.	5.2	16
23	Molten carbonate fuel cells: contribution to the study of cathode behaviour and oxygen reduction in molten Li2CO3î—,K2CO3 at 650°C. Journal of Power Sources, 1996, 61, 149-153.	7.8	13
24	Electrochemical Characterization of Stainless Steel as a New Electrode Material in a Medical Device for the Diagnosis of Sudomotor Dysfunction. Electroanalysis, 2012, 24, 1324-1333.	2.9	12
25	A kinetic approach on the effect of Cs addition on oxygen reduction for MCFC application. Electrochimica Acta, 2015, 184, 295-300.	5.2	11
26	Input on the Measurement and Comprehension of CO ₂ Solubility in Molten Alkali Carbonates in View of Its Valorization. Journal of the Electrochemical Society, 2020, 167, 064504.	2.9	11
27	Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide. Journal of Power Sources, 2007, 171, 261-267.	7.8	10
28	Electrochemical behavior of Mxâ^'1Ox (MÂ=ÂTi, Ce and Co) ultra-thin protective layers for MCFC cathode. International Journal of Hydrogen Energy, 2014, 39, 12233-12241.	7.1	10
29	Influence of Cs and Rb additions in LiK and LiNa molten carbonates on the behaviour of MCFC commercial porous Ni cathode. International Journal of Hydrogen Energy, 2017, 42, 1853-1858.	7.1	9
30	Corrosion analysis of AISI 430 stainless steel in the presence of Escherichia coli and Staphylococcus aureus. Corrosion Science, 2021, 181, 109204.	6.6	9
31	Electrochemical Kinetics of Anodic Ni Dissolution in Aqueous Media as a Function of Chloride Ion Concentration at pH Values Close to Physiological Conditions. Electroanalysis, 2012, 24, 386-391.	2.9	8
32	Ageing of nickel used as sensitive material for early detection of sudomotor dysfunction. Applied Surface Science, 2012, 258, 2724-2731.	6.1	7
33	Small fiber neuropathy diagnosis by a non-invasive electrochemical method: mimicking the in-vivo responses by optimization of electrolytic cell parameters. Electrochimica Acta, 2014, 140, 37-41.	5.2	7
34	Effect of pressure on high temperature steam electrolysis: Model and experimental tests. International Journal of Hydrogen Energy, 2015, 40, 11378-11384.	7.1	7
35	Novel La2-x Cu x NiO4±δ/La4Ni3O10-δ composite materials for intermediate temperature solid oxide fuel cells, IT-SOFC. Journal of Solid State Electrochemistry, 2016, 20, 911-920.	2.5	6
36	SUDOSCAN Device for the Early Detection of Diabetes: In Vitro Measurement versus Results of Clinical Tests. Sensor Letters, 2011, 9, 2147-2149.	0.4	5

MICHEL CASSIR

#	Article	IF	CITATIONS
37	Electrochemical detection of nitromethane vapors combined with a solubilization device. Talanta, 2015, 132, 334-338.	5.5	4
38	Corrosion Behavior of Biocompatible Stainless Steels in Physiological Medium for Nonâ€invasive Diagnosis of Small Fiber Neuropathies Applications. Electroanalysis, 2016, 28, 380-384.	2.9	4
39	Electrochemical Behavior of Electrode Materials (Nickel and Stainless Steels) for Sudomotor Dysfunction Applications: A Review. Electroanalysis, 2018, 30, 2525-2534.	2.9	4
40	Optimization of the electrochemical reduction of nitromethane for the development of an integrated portable sensor. Electrochimica Acta, 2013, 99, 94-101.	5.2	2
41	Electrochemical Behavior of Stainless Steels for Sudomotor Dysfunction Applications. Electroanalysis, 2018, 30, 162-169.	2.9	2
42	Influence of pressure on the electrical and electrochemical behaviour of high-temperature steam electrolyser La0.6Sr0.4Co0.2Fe0.8O3 anode. Journal of Solid State Electrochemistry, 2018, 22, 3663-3671.	2.5	2
43	Mechanisms of enhanced lithium intercalation into thin film V 2 O 5 in ionic liquids investigated by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Journal of Power Sources, 2017, 364, 61-71.	7.8	1
44	Oxidation behavior of H2 and CO produced by H2O and/or CO2 reduction in molten carbonates: Effect of gas environment and hydroxides. Electrochimica Acta, 2021, 395, 139202.	5.2	1
45	Electrolytic Cell Design to Simulate the Electrochemical Skin Response. Electroanalysis, 2019, 31, 22-30.	2.9	0