Carla A Ng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/249514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Information Requirements under the Essential-Use Concept: PFAS Case Studies. Environmental Science & Technology, 2022, 56, 6232-6242.	4.6	32
2	Understanding the dynamics of physiological changes, protein expression, and PFAS in wildlife. Environment International, 2022, 159, 107037.	4.8	29
3	Per―and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environmental Toxicology and Chemistry, 2021, 40, 606-630.	2.2	697
4	PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environmental Toxicology and Chemistry, 2021, 40, 631-657.	2.2	311
5	Absorption, distribution, and toxicity of per- and polyfluoroalkyl substances (PFAS) in the brain: a review. Environmental Sciences: Processes and Impacts, 2021, 23, 1623-1640.	1.7	64
6	Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods. Toxics, 2021, 9, 45.	1.6	34
7	A pathway level analysis of PFAS exposure and risk of gestational diabetes mellitus. Environmental Health, 2021, 20, 63.	1.7	29
8	Quantitative Chemical Proteomics Reveals Interspecies Variations on Binding Schemes of L-FABP with Perfluorooctanesulfonate. Environmental Science & amp; Technology, 2021, 55, 9012-9023.	4.6	4
9	Addressing Urgent Questions for PFAS in the 21st Century. Environmental Science & Technology, 2021, 55, 12755-12765.	4.6	17
10	Integrative Computational Approaches to Inform Relative Bioaccumulation Potential of Per- and Polyfluoroalkyl Substances Across Species. Toxicological Sciences, 2021, 180, 212-223.	1.4	18
11	Finding essentiality feasible: common questions and misinterpretations concerning the "essential-use― concept. Environmental Sciences: Processes and Impacts, 2021, 23, 1079-1087.	1.7	16
12	A Classification Model to Identify Direct-Acting Mutagenic Polycyclic Aromatic Hydrocarbon Transformation Products. Chemical Research in Toxicology, 2021, 34, 2273-2286.	1.7	3
13	Bayesian Refinement of the Permeability-Limited Physiologically Based Pharmacokinetic Model for Perfluorooctanoic Acid in Male Rats. Chemical Research in Toxicology, 2021, 34, 2298-2308.	1.7	4
14	Impacts of Sex and Exposure Duration on Gene Expression in Zebrafish Following Perfluorooctane Sulfonate Exposure. Environmental Toxicology and Chemistry, 2020, 39, 437-449.	2.2	12
15	Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?. Environmental Science & Technology, 2020, 54, 12820-12828.	4.6	149
16	Network Analysis for Prioritizing Biodegradation Metabolites of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 2020, 54, 10735-10744.	4.6	12
17	The high persistence of PFAS is sufficient for their management as a chemical class. Environmental Sciences: Processes and Impacts, 2020, 22, 2307-2312.	1.7	125
18	An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Sciences: Processes and Impacts, 2020, 22, 2345-2373.	1.7	632

Carla A Ng

#	Article	IF	CITATIONS
19	Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environmental Sciences: Processes and Impacts, 2020, 22, 1444-1460.	1.7	126
20	Estimating polybrominated diphenyl ether (PBDE) exposure through seafood consumption in Switzerland using international food trade data. Environment International, 2020, 138, 105652.	4.8	19
21	Nontarget Screening of Per- and Polyfluoroalkyl Substances Binding to Human Liver Fatty Acid Binding Protein. Environmental Science & Technology, 2020, 54, 5676-5686.	4.6	45
22	Using Machine Learning to Classify Bioactivity for 3486 Per- and Polyfluoroalkyl Substances (PFASs) from the OECD List. Environmental Science & Technology, 2019, 53, 13970-13980.	4.6	68
23	Why is high persistence alone a major cause of concern?. Environmental Sciences: Processes and Impacts, 2019, 21, 781-792.	1.7	106
24	The concept of essential use for determining when uses of PFASs can be phased out. Environmental Sciences: Processes and Impacts, 2019, 21, 1803-1815.	1.7	125
25	Formation of PFAAs in fish through biotransformation: A PBPK approach. Chemosphere, 2018, 202, 218-227.	4.2	12
26	Evaluating parameter availability for physiologically based pharmacokinetic (PBPK) modeling of perfluorooctanoic acid (PFOA) in zebrafish. Environmental Sciences: Processes and Impacts, 2018, 20, 105-119.	1.7	20
27	Polybrominated Diphenyl Ether (PBDE) Accumulation in Farmed Salmon Evaluated Using a Dynamic Sea-Cage Production Model. Environmental Science & Technology, 2018, 52, 6965-6973.	4.6	13
28	Tracking pesticide fate in conventional banana cultivation in Costa Rica: A disconnect between protecting ecosystems and consumer health. Science of the Total Environment, 2018, 613-614, 1250-1262.	3.9	42
29	A population-based simultaneous fugacity model design for polychlorinated biphenyls (PCBs) transport in an aquatic system. MethodsX, 2018, 5, 1311-1323.	0.7	2
30	Modeling the impact of biota on polychlorinated biphenyls (PCBs) fate and transport in Lake Ontario using a population-based multi-compartment fugacity approach. Environmental Pollution, 2018, 241, 720-729.	3.7	11
31	Predicting Relative Protein Affinity of Novel Per- and Polyfluoroalkyl Substances (PFASs) by An Efficient Molecular Dynamics Approach. Environmental Science & Technology, 2018, 52, 7972-7980.	4.6	81
32	A Permeability-Limited Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctanoic acid (PFOA) in Male Rats. Environmental Science & Technology, 2017, 51, 9930-9939.	4.6	49
33	Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities. Environmental Toxicology and Chemistry, 2017, 36, 882-897.	2.2	106
34	The Global Food System as a Transport Pathway for Hazardous Chemicals: The Missing Link between Emissions and Exposure. Environmental Health Perspectives, 2017, 125, 1-7.	2.8	168
35	Evaluating the Use of Alternatives Assessment To Compare Bulk Organic Chemical and Nanomaterial Alternatives to Brominated Flame Retardants. ACS Sustainable Chemistry and Engineering, 2016, 4, 6019-6030.	3.2	6
36	Modeling the dynamics of DDT in a remote tropical floodplain: indications of post-ban use?. Environmental Science and Pollution Research, 2016, 23, 10317-10334.	2.7	11

Carla A Ng

#	Article	IF	CITATIONS
37	Exploring the Use of Molecular Docking to Identify Bioaccumulative Perfluorinated Alkyl Acids (PFAAs). Environmental Science & Technology, 2015, 49, 12306-12314.	4.6	81
38	Socio-economic analysis for the authorisation of chemicals under REACH: A case of very high concern?. Regulatory Toxicology and Pharmacology, 2014, 70, 564-571.	1.3	9
39	Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: Data availability and quality for 36 alternative brominated flame retardants. Chemosphere, 2014, 116, 118-123.	4.2	108
40	Bioaccumulation of Perfluorinated Alkyl Acids: Observations and Models. Environmental Science & Technology, 2014, 48, 4637-4648.	4.6	246
41	Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. Environmental Toxicology and Chemistry, 2013, 32, 20-31.	2.2	102
42	Response to Comment on Screening for PBT Chemicals among the "Existing―and "New―Chemicals of the EU. Environmental Science & Technology, 2013, 47, 6065-6066.	4.6	3
43	Bioconcentration of Perfluorinated Alkyl Acids: How Important Is Specific Binding?. Environmental Science & Technology, 2013, 47, 7214-7223.	4.6	167
44	Describing the environmental fate of diuron in a tropical river catchment. Science of the Total Environment, 2012, 440, 178-185.	3.9	27
45	Screening for PBT Chemicals among the "Existing―and "New―Chemicals of the EU. Environmental Science & Technology, 2012, 46, 5680-5687.	4.6	125
46	How many persistent organic pollutants should we expect?. Atmospheric Pollution Research, 2012, 3, 383-391.	1.8	88
47	A Framework for Evaluating the Contribution of Transformation Products to Chemical Persistence in the Environment. Environmental Science & Technology, 2011, 45, 111-117.	4.6	30
48	Forecasting the effects of global change scenarios on bioaccumulation patterns in great lakes species. Global Change Biology, 2011, 17, 720-733.	4.2	30
49	Tracking bioaccumulation in aquatic organisms: A dynamic model integrating life history characteristics and environmental change. Ecological Modelling, 2009, 220, 1266-1273.	1.2	14
50	Ecological engineering and sustainability: A new opportunity for chemical engineering. AICHE Journal, 2008, 54, 3040-3047.	1.8	7
51	Chemical amplification in an invaded food web: Seasonality and ontogeny in a highâ€biomass, lowâ€diversity ecosystem. Environmental Toxicology and Chemistry, 2008, 27, 2186-2195.	2.2	24
52	QUANTITATIVE PATTERNS IN THE STRUCTURE OF MODEL AND EMPIRICAL FOOD WEBS. Ecology, 2005, 86, 1301-1311.	1.5	179