Nhiem Tran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2494853/publications.pdf

Version: 2024-02-01

172207 174990 2,811 66 29 52 citations h-index g-index papers 67 67 67 4135 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Magnetic nanoparticles: biomedical applications and challenges. Journal of Materials Chemistry, 2010, 20, 8760.	6.7	350
2	Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. International Journal of Nanomedicine, 2010, 5, 277.	3.3	253
3	Non-Lamellar Lyotropic Liquid Crystalline Lipid Nanoparticles for the Next Generation of Nanomedicine. ACS Nano, 2019, 13, 6178-6206.	7.3	166
4	Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomaterialia, 2011, 7, 1298-1306.	4.1	126
5	Nanotechnology for bone materials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 336-351.	3.3	112
6	Recent Advances in Research Applications of Nanophase Hydroxyapatite. ChemPhysChem, 2012, 13, 2495-2506.	1.0	110
7	Paclitaxel-Loaded Self-Assembled Lipid Nanoparticles as Targeted Drug Delivery Systems for the Treatment of Aggressive Ovarian Cancer. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 25174-25185.	4.0	102
8	Nanostructure and cytotoxicity of self-assembled monoolein–capric acid lyotropic liquid crystalline nanoparticles. RSC Advances, 2015, 5, 26785-26795.	1.7	91
9	Lipid–PEG Conjugates Sterically Stabilize and Reduce the Toxicity of Phytantriol-Based Lyotropic Liquid Crystalline Nanoparticles. Langmuir, 2015, 31, 10871-10880.	1.6	88
10	Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity. Nanoscale, 2015, 7, 2905-2913.	2.8	69
11	Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution. Materials Science and Engineering C, 2017, 71, 584-593.	3.8	66
12	Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications. ACS Applied Materials & Diametria (2018, 10, 8474-8484).	4.0	61
13	Engineering the Interface: Nanodiamond Coating on 3D-Printed Titanium Promotes Mammalian Cell Growth and Inhibits <i>Staphylococcus aureus</i> Colonization. ACS Applied Materials & Discrete Samp; Interfaces, 2019, 11, 24588-24597.	4.0	60
14	Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids. Langmuir, 2018, 34, 2764-2773.	1.6	54
15	<p>Janus particles: recent advances in the biomedical applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 6749-6777.	3.3	54
16	High-Throughput Screening of Saturated Fatty Acid Influence on Nanostructure of Lyotropic Liquid Crystalline Lipid Nanoparticles. Langmuir, 2016, 32, 4509-4520.	1.6	52
17	Angle defines attachment: Switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting. Materials and Design, 2018, 154, 326-339.	3.3	51
18	Nanomaterialâ€Based Treatments for Medical Deviceâ€Associated Infections. ChemPhysChem, 2012, 13, 2481-2494.	1.0	50

#	Article	IF	CITATIONS
19	Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles. Faraday Discussions, 2016, 191, 545-563.	1.6	48
20	3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication, 2019, 11, 035014.	3.7	47
21	Rational design of additively manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formation. Materialia, 2019, 5, 100250.	1.3	45
22	<i>In Vitro</i> and <i>In Vivo</i> Toxicity and Biodistribution of Paclitaxel-Loaded Cubosomes as a Drug Delivery Nanocarrier: A Case Study Using an A431 Skin Cancer Xenograft Model. ACS Applied Bio Materials, 2020, 3, 4198-4207.	2.3	45
23	First Direct Observation of Stable Internally Ordered Janus Nanoparticles Created by Lipid Self-Assembly. Nano Letters, 2015, 15, 4229-4233.	4.5	40
24	Silver doped titanium oxide–PDMS hybrid coating inhibits Staphylococcus aureus and Staphylococcus epidermidis growth on PEEK. Materials Science and Engineering C, 2015, 49, 201-209.	3.8	39
25	Non-lamellar lyotropic liquid crystalline nanoparticles enhance the antibacterial effects of rifampicin against Staphylococcus aureus. Journal of Colloid and Interface Science, 2018, 519, 107-118.	5.0	38
26	Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management. Materials Science and Engineering C, 2019, 100, 378-387.	3.8	38
27	Self-assembled Lyotropic Liquid Crystalline Phase Behavior of Monoolein–Capric Acid–Phospholipid Nanoparticulate Systems. Langmuir, 2017, 33, 2571-2580.	1.6	36
28	$\langle i \rangle$ In Vivo $\langle i \rangle$ Caprine Model for Osteomyelitis and Evaluation of Biofilm-Resistant Intramedullary Nails. BioMed Research International, 2013, 2013, 1-11.	0.9	34
29	Nanomaterials for Treating Bacterial Biofilms on Implantable Medical Devices. Nanomaterials, 2020, 10, 2253.	1.9	32
30	Micellar Fd3m cubosomes from monoolein – long chain unsaturated fatty acid mixtures: Stability on temperature and pH response. Journal of Colloid and Interface Science, 2020, 566, 98-106.	5.0	27
31	Cuboplex-Mediated Nonviral Delivery of Functional siRNA to Chinese Hamster Ovary (CHO) Cells. ACS Applied Materials & Chinese Hamster Ovary (CHO) Cells. ACS Applied Materials & Chinese Hamster Ovary (CHO) Cells. ACS	4.0	27
32	3D-Printed Diamond–Titanium Composite: A Hybrid Material for Implant Engineering. ACS Applied Bio Materials, 2020, 3, 29-36.	2.3	24
33	Broad-Spectrum Solvent-free Layered Black Phosphorus as a Rapid Action Antimicrobial. ACS Applied Materials & Description (1988) amp; Interfaces, 2021, 13, 17340-17352.	4.0	24
34	Using SANS with Contrast-Matched Lipid Bicontinuous Cubic Phases To Determine the Location of Encapsulated Peptides, Proteins, and Other Biomolecules. Journal of Physical Chemistry Letters, 2016, 7, 2862-2866.	2.1	23
35	Toward Cell Membrane Biomimetic Lipidic Cubic Phases: A High-Throughput Exploration of Lipid Compositional Space. ACS Applied Bio Materials, 2019, 2, 182-195.	2.3	23
36	Treatment of <i>Staphylococcus aureus</i> skin infection <i>in vivo</i> using rifampicin loaded lipid nanoparticles. RSC Advances, 2020, 10, 33608-33619.	1.7	22

#	Article	IF	CITATIONS
37	Synthetic ionizable aminolipids induce a pH dependent inverse hexagonal to bicontinuous cubic lyotropic liquid crystalline phase transition in monoolein nanoparticles. Journal of Colloid and Interface Science, 2021, 589, 85-95.	5.0	21
38	Using Machine Learning To Predict the Self-Assembled Nanostructures of Monoolein and Phytantriol as a Function of Temperature and Fatty Acid Additives for Effective Lipid-Based Delivery Systems. ACS Applied Nano Materials, 2019, 2, 1637-1647.	2.4	20
39	Mechanisms of enhanced osteoblast gene expression in the presence of hydroxyapatite coated iron oxide magnetic nanoparticles. Nanotechnology, 2012, 23, 455104.	1.3	18
40	Novel hierarchical tantalum oxide-PDMS hybrid coating for medical implants: One pot synthesis, characterization and modulation of fibroblast proliferation. Journal of Colloid and Interface Science, 2017, 485, 106-115.	5 . O	17
41	Understanding magnetic nanoparticle osteoblast receptor-mediated endocytosis using experiments and modeling. Nanotechnology, 2013, 24, 185102.	1.3	16
42	<i>In vitro</i> cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents. Materials Research Express, 2018, 5, 035051.	0.8	16
43	Iron Oxide Nanoparticles: Novel Drug Delivery Materials for Treating Bone Diseases. Advanced Materials Research, 0, 89-91, 411-418.	0.3	14
44	Inverse hexagonal and cubic micellar lyotropic liquid crystalline phase behaviour of novel double chain sugar-based amphiphiles. Colloids and Surfaces B: Biointerfaces, 2017, 151, 34-38.	2.5	14
45	Niobium oxide–polydimethylsiloxane hybrid composite coatings for tuning primary fibroblast functions. Journal of Biomedical Materials Research - Part A, 2014, 102, 1478-1485.	2.1	13
46	Direct Visualization of the Structural Transformation between the Lyotropic Liquid Crystalline Lamellar and Bicontinuous Cubic Mesophase. Journal of Physical Chemistry Letters, 2018, 9, 3397-3402.	2.1	13
47	Size-Dependent Encapsulation and Release of dsDNA from Cationic Lyotropic Liquid Crystalline Cubic Phases. ACS Biomaterials Science and Engineering, 2020, 6, 4401-4413.	2.6	13
48	Characterization and bioactive properties of zirconia based polymeric hybrid for orthopedic applications. Journal of Materials Science: Materials in Medicine, 2014, 25, 347-354.	1.7	10
49	Modeling the Influence of Fatty Acid Incorporation on Mesophase Formation in Amphiphilic Therapeutic Delivery Systems. Molecular Pharmaceutics, 2016, 13, 996-1003.	2.3	10
50	Highly uniform polycrystalline diamond coatings of three-dimensional structures. Surface and Coatings Technology, 2021, 408, 126815.	2.2	10
51	Generation of programmable dynamic flow patterns in microfluidics using audio signals. Lab on A Chip, 2021, 21, 4672-4684.	3.1	10
52	Protein-Eye View of the in Meso Crystallization Mechanism. Langmuir, 2019, 35, 8344-8356.	1.6	9
53	Resonant Acoustic Mixing Method to Produce Lipid-Based Liquid-Crystal Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 10653-10664.	1.5	8
54	Controlling the pH dependent transition between monoolein Fd3m micellar cubosomes and hexosomes using fatty acetate and fatty acid additive mixtures. Journal of Colloid and Interface Science, 2022, 607, 848-856.	5.0	8

#	Article	IF	CITATIONS
55	Lipidic poly(2-oxazoline)s as PEG replacement steric stabilisers for cubosomes. Journal of Colloid and Interface Science, 2022, 623, 1142-1150.	5.0	8
56	EFFECTS OF MAGNETITE AND MAGHEMITE NANOPARTICLES ON BONE CELL AND <l>STAPHYLOCOCCUS AUREUS</l> FUNCTIONS. Technology and Innovation, 2011, 13, 39-50.	0.2	7
57	Single-Step Fabrication Method toward 3D Printing Composite Diamond–Titanium Interfaces for Neural Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31474-31484.	4.0	6
58	Tuning Nanostructured Lyotropic Liquid Crystalline Mesophases in Lipid Nanoparticles with Protic lonic Liquids. Journal of Physical Chemistry Letters, 2021, 12, 399-404.	2.1	6
59	Iridescence and hydrophobicity have no clear delineation that explains flower petal micro-surface. Scientific Reports, 2020, 10, 10685.	1.6	4
60	Osteoblast Cell Response on Polycrystalline Diamond-Coated Additively Manufactured Scaffolds. ACS Applied Bio Materials, 2021, 4, 7509-7516.	2.3	4
61	Application of Fluconazole-Loaded pH-Sensitive Lipid Nanoparticles for Enhanced Antifungal Therapy. ACS Applied Materials & Diterfaces, 2022, 14, 32845-32854.	4.0	4
62	Coatings on metallic implants for biomedical applications. , 2020, , 359-385.		2
63	Lipid nanoparticle steric stabilization roadmap. Advances in Biomembranes and Lipid Self-Assembly, 2022, , 41-75.	0.3	2
64	Effects of iron oxide magnetic nanoparticles on osteoblast proliferation. , 2009, , .		0
65	Gene expression and nanoparticle uptake by osteoblasts exposed to hydroxyapatite coated superparamagnetic nanoparticles., 2011,,.		0
66	Monitoring Inflammation and Infection via Implanted Nanosensors. , 2011, , 61-73.		0