Yu Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2494761/publications.pdf

Version: 2024-02-01

				304368	2	14527
ı	59		2,287	22		47
ı	papers		citations	h-index		g-index
		_				
	64		64	64		3700
	all docs		docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Thiosemicarbazones from the Old to New: Iron Chelators That Are More Than Just Ribonucleotide Reductase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 5271-5294.	2.9	338
2	Tuning Cell Cycle Regulation with an Iron Key. Cell Cycle, 2007, 6, 1982-1994.	1.3	206
3	Design, Synthesis, and Characterization of Novel Iron Chelators:  Structureâ^'Activity Relationships of the 2-Benzoylpyridine Thiosemicarbazone Series and Their 3-Nitrobenzoyl Analogues as Potent Antitumor Agents. Journal of Medicinal Chemistry, 2007, 50, 3716-3729.	2.9	206
4	Chelators at the Cancer Coalface: Desferrioxamine to Triapine and Beyond. Clinical Cancer Research, 2006, 12, 6876-6883.	3.2	178
5	Iron Chelators for the Treatment of Cancer. Current Medicinal Chemistry, 2012, 19, 2689-2702.	1.2	158
6	Inhibition of Spleen Tyrosine Kinase Potentiates Paclitaxel-Induced Cytotoxicity in Ovarian Cancer Cells by Stabilizing Microtubules. Cancer Cell, 2015, 28, 82-96.	7.7	125
7	Cellular Iron Depletion Stimulates the JNK and p38 MAPK Signaling Transduction Pathways, Dissociation of ASK1-Thioredoxin, and Activation of ASK1. Journal of Biological Chemistry, 2011, 286, 15413-15427.	1.6	95
8	Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent antiâ€ŧumour efficacy. British Journal of Pharmacology, 2012, 165, 148-166.	2.7	90
9	Role of Glutaredoxin1 and Glutathione in Regulating the Activity of the Copper-transporting P-type ATPases, ATP7A and ATP7B. Journal of Biological Chemistry, 2010, 285, 27111-27121.	1.6	69
10	The Medicinal Chemistry of Novel Iron Chelators for the Treatment of Cancer. Current Topics in Medicinal Chemistry, 2011, 11, 483-499.	1.0	69
11	Ovarian cancer stem cells and their role in drug resistance. International Journal of Biochemistry and Cell Biology, 2019, 106, 117-126.	1.2	54
12	Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. International Journal of Nanomedicine, 2014, 9, 3623.	3.3	50
13	Drug repositioning of mevalonate pathway inhibitors as antitumor agents for ovarian cancer. Oncotarget, 2017, 8, 72147-72156.	0.8	49
14	Melanotransferrin: Search for a function. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 237-243.	1.1	46
15	Inactivation of Arid $1a$ in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nature Communications, 2020, 11 , 2717.	5.8	45
16	The Potent and Novel Thiosemicarbazone Chelators Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-Benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone Affect Crucial Thiol Systems Required for Ribonucleotide Reductase Activity. Molecular Pharmacology, 2011, 79, 921-931.	1.0	44
17	Therapeutic Inducers of Apoptosis in Ovarian Cancer. Cancers, 2019, 11, 1786.	1.7	44
18	BMP9/p38 MAPK is essential for the antiproliferative effect of resveratrol on human colon cancer. Oncology Reports, 2016, 35, 939-947.	1.2	38

#	Article	IF	Citations
19	Mechanisms underlying acquired platinum resistance in high grade serous ovarian cancer - a mini review. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 371-378.	1.1	37
20	Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase. Biochemical Pharmacology, 2016, 109, 27-47.	2.0	36
21	Oridonin upregulates PTEN through activating p38 MAPK and inhibits proliferation in human colon cancer cells. Oncology Reports, 2016, 35, 3341-3348.	1.2	28
22	Oridonin inhibits the proliferation of human colon cancer cells by upregulating BMP7 to activate p38 MAPK. Oncology Reports, 2016, 35, 2691-2698.	1.2	24
23	Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions. Life Science Alliance, 2018, 1, e201700009.	1.3	23
24	A spectrophotometric assay for monoamine oxidase activity with 2, 4-dinitrophenylhydrazine as a derivatized reagent. Analytical Biochemistry, 2016, 512, 18-25.	1.1	22
25	Inhibition of ovarian tumor cell invasiveness by targeting SYK in the tyrosine kinase signaling pathway. Oncogene, 2018, 37, 3778-3789.	2.6	22
26	Proteome-wide Tyrosine Phosphorylation Analysis Reveals Dysregulated Signaling Pathways in Ovarian Tumors. Molecular and Cellular Proteomics, 2019, 18, 448-460.	2.5	19
27	Discovery of novel 9H-purin derivatives as dual inhibitors of HDAC1 and CDK2. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2136-2140.	1.0	15
28	Kinase Targets for Mycolic Acid Biosynthesis in Mycobacterium tuberculosis. Current Molecular Pharmacology, 2019, 12, 27-49.	0.7	15
29	Discovery of 2,4-pyrimidinediamine derivatives as potent dual inhibitors of ALK and HDAC. European Journal of Medicinal Chemistry, 2021, 224, 113672.	2.6	14
30	All-trans retinoic acid shifts rosiglitazone-induced adipogenic differentiation to osteogenic differentiation in mouse embryonic fibroblasts. International Journal of Molecular Medicine, 2016, 38, 1693-1702.	1.8	12
31	Ruthenium(ii) arene complexes showing DNA photobinding: the role of the basicity of the monodentate ligand. New Journal of Chemistry, 2017, 41, 10225-10230.	1.4	10
32	A Oneâ€pot Facile Synthesis of 2,3â€Dihydroxyquinoxaline and 2,3â€Dichloroquinoxaline Derivatives Using Silica Gel as an Efficient Catalyst. Journal of Heterocyclic Chemistry, 2018, 55, 1809-1814.	1.4	10
33	TNBG-5602, a novel derivative of quinoxaline, inhibits liver cancer growth via upregulating peroxisome proliferator-activated receptor $\hat{I}^3 < i > in vitro < /i> and < i > in vivo < /i> . Journal of Pharmacy and Pharmacology, 2019, 71, 1684-1694.$	1.2	10
34	Antitumour effects of tetrazanbigen against human hepatocellular carcinoma QGY-7701 through inducing lipid accumulation <i>in vitro</i> and <i>in vivo</i> Journal of Pharmacy and Pharmacology, 2015, 67, 1593-1602.	1.2	9
35	Spleen tyrosine kinase activity regulates epidermal growth factor receptor signaling pathway in ovarian cancer. EBioMedicine, 2019, 47, 184-194.	2.7	9
36	Tetrazanbigen Derivatives as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Partial Agonists: Design, Synthesis, Structure–Activity Relationship, and Anticancer Activities. Journal of Medicinal Chemistry, 2021, 64, 1018-1036.	2.9	9

#	Article	IF	CITATIONS
37	Chelators to the Rescue: Different Horses for Different Courses!. Chemical Research in Toxicology, 2011, 24, 279-282.	1.7	8
38	MCM3 is a novel proliferation marker associated with longer survival for patients with tubo-ovarian high-grade serous carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 480, 855-871.	1.4	8
39	A Rapid and Sensitive UPLC–MS/MS Method for Determination of Docetaxel in Rabbit Plasma: Pharmacokinetic Study of New Lung-Targeting Docetaxel Liposome at Low Dose. Cell Biochemistry and Biophysics, 2015, 73, 623-629.	0.9	7
40	Auâ€NHC complexes with thiocarboxylate ligands: Synthesis, structure, stability, thiol exchange and in vitro anticancer activity. Applied Organometallic Chemistry, 0, , .	1.7	6
41	TiCl ₄ mediated facile synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. Synthetic Communications, 2020, 50, 423-431.	1.1	4
42	Mononitration of a Calix[4] arene Methylene Bridge: Synthesis and Preliminary Catalysis Performances of Bridging Chiral $\langle i \rangle p \langle i \rangle - \langle i \rangle tert \langle i \rangle - Butylcalix[4]$ arenes with a Monoamino Bridge Substituent in a 1,3-Alternate Conformation. Journal of Organic Chemistry, 2021, 86, 3952-3959.	1.7	3
43	Relationship between ovarian cancer stem cells, epithelial mesenchymal transition and tumour recurrence., 2019, 2, 1127-1135.		3
44	$\label{lem:cu} Cu(OAc) < sub > 2 < / sub > mediated mild synthesis of 2-aminobenzimidazoles and 2-aminobenzoxazoles. Synthetic Communications, 0, , 1-9.$	1.1	3
45	An Improved and Efficient Synthesis of Panobinostat. Journal of Chemical Research, 2018, 42, 471-473.	0.6	2
46	Crystal structure of 3-fluoro-9-methoxy-4 <i>b</i> ,5,14,15-tetrahydro-6 <i>H</i> -isoquinolino [2′,1′:1,6]pyrazino[2,3- <i>b</i>]quinoxaline, C ₁₉ H ₁₇ FN ₄ O. Zeitsch Fur Kristallographie - New Crystal Structures, 2020, 235, 401-402.	ri ft. 1	2
47	3,5-Dibromophenyl-functionalised imidazolium salts and their corresponding [Au(NHC)2]+ complexes: synthesis, supramolecular chemistry and anti-cancer activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 101, 227-242.	0.9	2
48	Crystal structure of 9-methoxy-2,3,4,4 <i>a</i> ,5,6-hexahydro-1 <i>H</i> -pyrido [1′,2′:1,6]pyrazino[2,3- <i>b</i>]quinoxaline, C ₁₅ H ₁₈ N ₄ O. Zeitschri Fur Kristallographie - New Crystal Structures, 2022, .	fto.1	2
49	Docetaxel-Loaded Lecithoid Nanoparticles with Enhanced Lung Targeting Efficiency and Reduced Systemic Toxicity: Developed by Solid Dispersion and Effervescent Techniques. Chemical and Pharmaceutical Bulletin, 2017, 65, 959-966.	0.6	1
50	Metabolic profile of lung-targeted docetaxel liposomes in rabbits, rats and mice. Xenobiotica, 2020, 50, 212-221.	0.5	1
51	Crystal structure of 2-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino[2′,1′:1,6] pyrazino[2,3-b]quinoxaline, C19H18N4O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 595-597.	0.1	1
52	PTEN inhibition leads to the development of resistance to novel isoquinoline derivative TNBG-5602 in human liver cancer cells. American Journal of Cancer Research, 2021, 11, 4515-4527.	1.4	1
53	The Biological Fate of a Novel Anticancer Drug Candidate TNBG-5602: Metabolic Profile, Interaction with CYP450, and Pharmacokinetics in Rats. Molecules, 2022, 27, 2594.	1.7	1
54	Nuclear SYK phosphorylation is associated with poor survival in high-grade serous ovarian cancer. Gynecologic Oncology, 2017, 145, 129.	0.6	0

#	Article	IF	CITATIONS
55	Chelators as Anti-Cancer Drugs. , 2014, , 911-916.		0
56	Abstract NTOC-115: ASSOCIATION BETWEEN NUCLEAR SYK PHOSPHORYLATION AND EGFR/ERBB2 PATHWAY AND POOR SURVIVAL IN HIGH GRADE SEROUS OVARIAN CANCER. , 2017, , .		0
57	Abstract 2493: Inactivation of ARID1A-SWI/SNF complex alters chromatin compactness at enhancer regions and affects transcription of key tumor signaling circuitry. , 2018, , .		0
58	Chelators as Anti-Cancer Drugs. , 2008, , 598-601.		0
59	Calix[4]arene Bridge Mononitration with <i>tert</i> -Butyl Nitrite: Synthesis of Bridging Chiral <i>p</i> - <i>tert</i> -Butylcalix[4]arene with a Mononitro Bridge Substituent. Journal of Organic Chemistry, 2022, 87, 7665-7672.	1.7	0