Xiao-Hong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/249454/publications.pdf

Version: 2024-02-01

		471371	526166
48	934	17	27
papers	citations	h-index	g-index
50	50	50	544
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Wheat head counting in the wild by an augmented feature pyramid networks-based convolutional neural network. Computers and Electronics in Agriculture, 2022, 193, 106705.	3.7	19
2	Detection of apple varieties by nearâ€infrared reflectance spectroscopy coupled with <scp>SPSOâ€PFCM</scp> . Journal of Food Process Engineering, 2022, 45, .	1.5	3
3	Discrimination of the Red Jujube Varieties Using a Portable NIR Spectrometer and Fuzzy Improved Linear Discriminant Analysis. Foods, 2022, 11, 763.	1.9	16
4	Rapid authentication of the geographical origin of milk using portable nearâ€infrared spectrometer and fuzzy uncorrelated discriminant transformation. Journal of Food Process Engineering, 2022, 45, .	1,5	11
5	Beet seedling and weed recognition based on convolutional neural network and multi-modality images. Multimedia Tools and Applications, 2022, 81, 5239-5258.	2.6	2
6	Nondestructive detection of total soluble solids in grapes using VMDâ€RC and hyperspectral imaging. Journal of Food Science, 2022, 87, 326-338.	1.5	11
7	Green tea grades identification via Fourier transform nearâ€infrared spectroscopy and weighted global fuzzy uncorrelated discriminant transform. Journal of Food Process Engineering, 2022, 45, .	1.5	3
8	Determination of Pork Meat Storage Time Using Near-Infrared Spectroscopy Combined with Fuzzy Clustering Algorithms. Foods, 2022, 11, 2101.	1.9	4
9	Apple Leaf Disease Recognition and Sub-Class Categorization Based on Improved Multi-Scale Feature Fusion Network. IEEE Access, 2021, 9, 95517-95527.	2.6	24
10	Qualitative Analysis of Lambda-Cyhalothrin on Chinese Cabbage Using Mid-Infrared Spectroscopy Combined with Fuzzy Feature Extraction Algorithms. Agriculture (Switzerland), 2021, 11, 275.	1.4	10
11	Research on nondestructive identification of grape varieties based on EEMDâ€DWT and hyperspectral image. Journal of Food Science, 2021, 86, 2011-2023.	1.5	20
12	Nondestructive detection for Panax notoginseng powder grades based on hyperspectral imaging technology combined with CARSâ€PCA and MPAâ€LSSVM. Journal of Food Process Engineering, 2021, 44, e13718.	1.5	14
13	A possibilistic fuzzy Gath-Geva clustering algorithm using the exponential distance. Expert Systems With Applications, 2021, 184, 115550.	4.4	8
14	Classification of Chinese vinegar varieties using electronic nose and fuzzy Foley–Sammon transformation. Journal of Food Science and Technology, 2020, 57, 1310-1319.	1.4	11
15	Discrimination of tea varieties based on FTIR spectroscopy and an adaptive improved possibilistic câ€means clustering. Journal of Food Processing and Preservation, 2020, 44, e14795.	0.9	9
16	Determination of apple varieties by near infrared reflectance spectroscopy coupled with improved possibilistic Gath–Geva clustering algorithm. Journal of Food Processing and Preservation, 2020, 44, e14561.	0.9	7
17	Nondestructive detection for moisture content in green tea based on dielectric properties and VISSAâ€GWOâ€6VR algorithm. Journal of Food Processing and Preservation, 2020, 44, e14421.	0.9	13
18	Classification detection of saccharin jujube based on hyperspectral imaging technology. Journal of Food Processing and Preservation, 2020, 44, e14591.	0.9	14

#	Article	IF	CITATIONS
19	Northern Maize Leaf Blight Detection Under Complex Field Environment Based on Deep Learning. IEEE Access, 2020, 8, 33679-33688.	2.6	94
20	Nondestructive detection for egg freshness grade based on hyperspectral imaging technology. Journal of Food Process Engineering, 2020, 43, e13422.	1.5	36
21	Identification of crop diseases using improved convolutional neural networks. IET Computer Vision, 2020, 14, 538-545.	1.3	17
22	Research on apple origin classification based on variable iterative space shrinkage approach with stepwise regression <scp>â€"</scp> support vector machine algorithm and visibleâ€near infrared hyperspectral imaging. Journal of Food Process Engineering, 2020, 43, e13432.	1.5	10
23	Grade Identification of Tieguanyin Tea Using Fluorescence Hyperspectra and Different Statistical Algorithms. Journal of Food Science, 2019, 84, 2234-2241.	1.5	32
24	Detection of viability of soybean seed based on fluorescence hyperspectra and CARSâ€SVMâ€AdaBoost model. Journal of Food Processing and Preservation, 2019, 43, e14238.	0.9	29
25	Identification of tea varieties by midâ€infrared diffuse reflectance spectroscopy coupled with a possibilistic fuzzy câ€means clustering with a fuzzy covariance matrix. Journal of Food Process Engineering, 2019, 42, e13298.	1.5	10
26	Discrimination of Chinese Liquors Based on Electronic Nose and Fuzzy Discriminant Principal Component Analysis. Foods, 2019, 8, 38.	1.9	17
27	Spectral classification of lettuce cadmium stress based on information fusion and VISSAâ€GOAâ€SVM algorithm. Journal of Food Process Engineering, 2019, 42, e13085.	1.5	18
28	Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging. Computers and Electronics in Agriculture, 2019, 160, 153-159.	3.7	81
29	Estimating cadmium content in lettuce leaves based on deep brief network and hyperspectral imaging technology. Journal of Food Process Engineering, 2019, 42, e13293.	1.5	14
30	Discrimination of tea varieties using FTIR spectroscopy and allied Gustafson-Kessel clustering. Computers and Electronics in Agriculture, 2018, 147, 64-69.	3.7	30
31	Quantitative detection of mixed pesticide residue of lettuce leaves based on hyperspectral technique. Journal of Food Process Engineering, 2018, 41, e12654.	1.5	33
32	Quantitative detection of moisture content in rice seeds based on hyperspectral technique. Journal of Food Process Engineering, 2018, 41, e12916.	1.5	15
33	Nondestructive identification of green tea varieties based on hyperspectral imaging technology. Journal of Food Process Engineering, 2018, 41, e12800.	1.5	20
34	Identification of pesticide residues in lettuce leaves based on near infrared transmission spectroscopy. Journal of Food Process Engineering, 2018, 41, e12816.	1.5	22
35	Classification of Apple Varieties Using Near Infrared Reflectance Spectroscopy and Fuzzy Discriminant Câ€Means Clustering Model. Journal of Food Process Engineering, 2017, 40, e12355.	1.5	23
36	A Method for Rapid Identification of Rice Origin by Hyperspectral Imaging Technology. Journal of Food Process Engineering, 2017, 40, e12297.	1.5	48

3

#	Article	IF	CITATIONS
37	<scp>D</scp> iscrimination of pesticide residues in lettuce based on chemical molecular structure coupled with wavelet transform and near infrared hyperspectra. Journal of Food Process Engineering, 2017, 40, e12509.	1.5	29
38	Prediction of pork storage time using Fourier transform near infrared spectroscopy and Adaboostâ€ULDA. Journal of Food Process Engineering, 2017, 40, e12566.	1.5	12
39	Visualizing distribution of pesticide residues in mulberry leaves using NIR hyperspectral imaging. Journal of Food Process Engineering, 2017, 40, e12510.	1.5	20
40	Discrimination of Apples Using Near Infrared Spectroscopy and Sorting Discriminant Analysis. International Journal of Food Properties, 2016, 19, 1016-1028.	1.3	19
41	Classification of Black Beans Using Visible and Near Infrared Hyperspectral Imaging. International Journal of Food Properties, 2016, 19, 1687-1695.	1.3	35
42	Rapid Discrimination of Apple Varieties via Near-Infrared Reflectance Spectroscopy and Fast Allied Fuzzy C-Means Clustering. International Journal of Food Engineering, 2015, 11, 23-30.	0.7	10
43	A hybrid fuzzy K-harmonic means clustering algorithm. Applied Mathematical Modelling, 2015, 39, 3398-3409.	2.2	29
44	Mixed fuzzy inter-cluster separation clustering algorithm. Applied Mathematical Modelling, 2011, 35, 4790-4795.	2.2	16
45	The exploration and practice of the project-based learning for analog electronics teaching. , 2011, , .		0
46	Power quality detecting based on fast lifting wavelet transform. , 2008, , .		6
47	Complex wavelet based image deconvolution. , 2008, , .		0
48	Noise Clustering Using a New Distance. , 2006, , .		4