
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2494501/publications.pdf Version: 2024-02-01

LIBIN SLIM

#	Article	IF	CITATIONS
1	Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 2007, 25, 221-231.	9.4	1,047
2	ls autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evolutionary Biology, 2004, 4, 36.	3.2	230
3	Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 2009, 10, 567.	1.2	141
4	MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. Metabolic Engineering, 2018, 47, 200-210.	3.6	139
5	The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microbial Cell Factories, 2010, 9, 23.	1.9	131
6	Biomanufacturing: history and perspective. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 773-784.	1.4	104
7	Non-Sterilized Fermentative Production of Polymer-Grade L-Lactic Acid by a Newly Isolated Thermophilic Strain Bacillus sp. 2–6. PLoS ONE, 2009, 4, e4359.	1.1	103
8	Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microbial Cell Factories, 2017, 16, 205.	1.9	103
9	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	0.9	99
10	Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nature Communications, 2018, 9, 4917.	5.8	99
11	5S rRNA Promoter for Guide RNA Expression Enabled Highly Efficient CRISPR/Cas9 Genome Editing in <i>Aspergillus niger</i> . ACS Synthetic Biology, 2019, 8, 1568-1574.	1.9	96
12	Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metabolic Engineering, 2018, 49, 220-231.	3.6	95
13	Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp Fungal Genetics and Biology, 2009, 46, S19-S44.	0.9	93
14	Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnology for Biofuels, 2019, 12, 77.	6.2	92
15	Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation byKlebsiella pneumoniae. Biotechnology and Bioengineering, 2003, 83, 525-536.	1.7	87
16	Comparative Genomic Analysis of dha Regulon and Related Genes for Anaerobic Glycerol Metabolism in Bacteria. Biotechnology Progress, 2003, 19, 263-272.	1.3	81
17	Precisely Controlled Up/Down onversion Liquid and Solid State Photoluminescence of Carbon Dots. Advanced Optical Materials, 2018, 6, 1800115.	3.6	79
18	Tet-on, or Tet-off, that is the question: Advanced conditional gene expression in Aspergillus. Fungal Genetics and Biology, 2016, 89, 72-83.	0.9	77

#	Article	IF	CITATIONS
19	Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Current Opinion in Biotechnology, 2010, 21, 663-669.	3.3	76
20	Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochemistry, 2006, 41, 2160-2169.	1.8	73
21	Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microbial Cell Factories, 2019, 18, 28.	1.9	71
22	Study of the collapse mechanism of shield tunnels due to the failure of segments in sandy ground. Engineering Failure Analysis, 2017, 79, 464-490.	1.8	70
23	Biosensor-Based Evolution and Elucidation of a Biosynthetic Pathway in <i>Escherichia coli</i> . ACS Synthetic Biology, 2017, 6, 837-848.	1.9	64
24	Promoter Screening from Bacillus subtilis in Various Conditions Hunting for Synthetic Biology and Industrial Applications. PLoS ONE, 2016, 11, e0158447.	1.1	62
25	Coevolutionary Analysis Enabled Rational Deregulation of Allosteric Enzyme Inhibition in Corynebacterium glutamicum for Lysine Production. Applied and Environmental Microbiology, 2011, 77, 4352-4360.	1.4	61
26	Novel (2 <i>R</i> ,3 <i>R</i>)-2,3-Butanediol Dehydrogenase from Potential Industrial Strain Paenibacillus polymyxa ATCC 12321. Applied and Environmental Microbiology, 2011, 77, 4230-4233.	1.4	61
27	Genomic peculiarity of coding sequences and metabolic potential of probiotic Escherichia coli strain Nissle 1917 inferred from raw genome data. Journal of Biotechnology, 2005, 117, 147-161.	1.9	57
28	A novel strategy for protein production using non-classical secretion pathway in Bacillus subtilis. Microbial Cell Factories, 2016, 15, 69.	1.9	57
29	Synthetic Methylotrophy: A Practical Solution for Methanol-Based Biomanufacturing. Trends in Biotechnology, 2020, 38, 650-666.	4.9	56
30	Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14, 121.	1.9	55
31	Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Communications Biology, 2020, 3, 217.	2.0	52
32	Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics. Genome Biology, 2007, 8, R182.	13.9	51
33	High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. Journal of Environmental Sciences, 2017, 56, 25-35.	3.2	50
34	Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions. Bioprocess and Biosystems Engineering, 2010, 33, 507-523.	1.7	49
35	Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production. Journal of Biotechnology, 2011, 154, 248-254.	1.9	49
36	A Novel Corynebacterium glutamicum <scp>l</scp> -Glutamate Exporter. Applied and Environmental Microbiology, 2018, 84, .	1.4	49

#	Article	IF	CITATIONS
37	In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nature Communications, 2021, 12, 678.	5.8	44
38	Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production. Applied Microbiology and Biotechnology, 2013, 97, 1963-1971.	1.7	43
39	Remarkable nonlinear optical response of pyrazine-fused trichalcogenasumanenes and their application for optical power limiting. Journal of Materials Chemistry C, 2018, 6, 13114-13119.	2.7	42
40	Expanding targeting scope, editing window, and base transition capability of base editing in <i>Corynebacterium glutamicum</i> . Biotechnology and Bioengineering, 2019, 116, 3016-3029.	1.7	42
41	A quantitative image analysis pipeline for the characterization of filamentous fungal morphologies as a tool to uncover targets for morphology engineering: a case study using aplD in Aspergillus niger. Biotechnology for Biofuels, 2019, 12, 149.	6.2	42
42	Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends in Biotechnology, 2021, 39, 165-180.	4.9	42
43	Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro. Scientific Reports, 2016, 6, 32208.	1.6	41
44	IdentiCSidentification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics, 2004, 5, 112.	1.2	40
45	Evolving the <scp>l</scp> -lysine high-producing strain of <i>Escherichia coli</i> using a newly developed high-throughput screening method. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1227-1235.	1.4	39
46	Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation. Scientific Reports, 2016, 6, 38248.	1.6	39
47	Metabolic engineering of <i>Corynebacterium glutamicum</i> by synthetic small regulatory RNAs. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 203-208.	1.4	39
48	Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnology for Biofuels, 2020, 13, 41.	6.2	39
49	ReacKnock: Identifying Reaction Deletion Strategies for Microbial Strain Optimization Based on Genome-Scale Metabolic Network. PLoS ONE, 2013, 8, e72150.	1.1	39
50	CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an l-proline exporter for l-proline hyperproduction. Nature Communications, 2022, 13, 891.	5.8	39
51	Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. Applied Microbiology and Biotechnology, 2013, 97, 2939-2949.	1.7	38
52	Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger. Fungal Biology and Biotechnology, 2018, 5, 2.	2.5	38
53	Opening two benzene rings on trichalcogenasumanenes toward high performance organic optical-limiting materials. Chemical Communications, 2018, 54, 10981-10984.	2.2	37
54	Enhancing 5â€∎minolevulinic acid tolerance and production by engineering the antioxidant defense system of <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2019, 116, 2018-2028.	1.7	36

#	Article	IF	CITATIONS
55	Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresources and Bioprocessing, 2017, 4, .	2.0	35
56	Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. Journal of Biotechnology, 2007, 132, 342-352.	1.9	34
57	Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of Biotechnology, 2016, 226, 8-13.	1.9	34
58	Metallated Graphynes as a New Class of Photofunctional 2D Organometallic Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 11326-11334.	7.2	34
59	Efficient Multiplex Gene Repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 357.	2.0	33
60	A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. BMC Genomics, 2012, 13, 128.	1.2	31
61	Engineering of recombinant <scp><i>E</i></scp> <i>scherichia coli</i> cells coâ€expressing polyâ€Î³â€glutamic acid (γâ€ <scp>PGA</scp>) synthetase and glutamate racemase for differential yielding of γâ€ <scp>PGA</scp> . Microbial Biotechnology, 2013, 6, 675-684.	2.0	30
62	Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microbial Cell Factories, 2015, 14, 86.	1.9	30
63	Conjugated Random Donor–Acceptor Copolymers of [1]Benzothieno[3,2- <i>b</i>]benzothiophene and Diketopyrrolopyrrole Units for High Performance Polymeric Semiconductor Applications. Macromolecules, 2016, 49, 6334-6342.	2.2	30
64	Engineering Artificial Fusion Proteins for Enhanced Methanol Bioconversion. ChemBioChem, 2018, 19, 2465-2471.	1.3	30
65	Efficient Construction of Near-Infrared Absorption Donor–Acceptor Copolymers with and without Pt(II)-Incorporation toward Broadband Nonlinear Optical Materials. ACS Applied Materials & Interfaces, 2020, 12, 2944-2951.	4.0	29
66	Protein identification from two-dimensional gel electrophoresis analysis of by combined use of mass spectrometry data and raw genome sequences. Proteome Science, 2003, 1, 6.	0.7	26
67	Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis. Scientific Reports, 2017, 7, 44023.	1.6	26
68	Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnology Letters, 2013, 35, 763-768.	1.1	24
69	An extended bioreaction database that significantly improves reconstruction and analysis of genome-scale metabolic networks. Integrative Biology (United Kingdom), 2011, 3, 1071-1086.	0.6	23
70	Molecular and Crystal Structure Diversity, and Physical Properties of Tetrathiafulvalene Derivatives Substituted with Various Aryl Groups through Sulfur Bridges. Chemistry - A European Journal, 2013, 19, 12517-12525.	1.7	23
71	Straightforward access to aryl-substituted/fused 1,3-dithiole-2-chalcogenones by Cu-catalyzed C–S coupling between aryl iodides and zinc–thiolate complex (TBA)2[Zn(DMIT)2]. RSC Advances, 2013, 3, 10193.	1.7	23
72	Diketopyrrolopyrrole based donor–acceptor π-conjugated copolymers with near-infrared absorption for 532 and 1064 nm nonlinear optical materials. Journal of Materials Chemistry C, 2020, 8, 12993-13000.	2.7	23

#	Article	IF	CITATIONS
73	Broadband optical limiting of a novel twisted tetrathiafulvalene incorporated donor–acceptor material and its Ormosil gel glasses. Journal of Materials Chemistry C, 2018, 6, 8495-8501.	2.7	22
74	Functional exploration of co-expression networks identifies a nexus for modulating protein and citric acid titres in Aspergillus niger submerged culture. Fungal Biology and Biotechnology, 2019, 6, 18.	2.5	22
75	Multistage regulation strategy as a tool to control the vertical displacement of railway tracks placed over the building site of two overlapped shield tunnels. Tunnelling and Underground Space Technology, 2019, 83, 282-290.	3.0	22
76	Disruption or reduced expression of the orotidine-5′-decarboxylase gene pyrG increases citric acid production: a new discovery during recyclable genome editing in Aspergillus niger. Microbial Cell Factories, 2020, 19, 76.	1.9	22
77	Experimental study on surface settlements induced by sequential excavation of two parallel tunnels in drained granular soil. Tunnelling and Underground Space Technology, 2020, 98, 103347.	3.0	21
78	Genome Sequence of the Thermophilic Strain Bacillus coagulans2-6, an Efficient Producer of High-Optical-Purity <scp>l</scp> -Lactic Acid. Journal of Bacteriology, 2011, 193, 4563-4564.	1.0	20
79	GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli. Microbial Cell Factories, 2019, 18, 106.	1.9	19
80	CRISPR/Cas13d-Mediated Microbial RNA Knockdown. Frontiers in Bioengineering and Biotechnology, 2020, 8, 856.	2.0	19
81	Honeycomb supramolecular frameworks of organic–inorganic hybrid cluster composed of cation radical and Keggin-type polyoxometalate. CrystEngComm, 2015, 17, 4110-4116.	1.3	18
82	Enhancement of the thermal and alkaline pH stability of Escherichia coli lysine decarboxylase for efficient cadaverine production. Biotechnology Letters, 2018, 40, 719-727.	1.1	18
83	Comprehensive Improvement of Sample Preparation Methodologies Facilitates Dynamic Metabolomics ofAspergillus niger. Biotechnology Journal, 2019, 14, 1800315.	1.8	18
84	Simultaneously improving the activity and thermostability of a new proline 4-hydroxylase by loop grafting and site-directed mutagenesis. Applied Microbiology and Biotechnology, 2019, 103, 265-277.	1.7	18
85	A newly isolated and identified vitamin B12 producing strain: Sinorhizobium meliloti 320. Bioprocess and Biosystems Engineering, 2016, 39, 1527-1537.	1.7	17
86	Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. Journal of Fungi (Basel, Switzerland), 2021, 7, 535.	1.5	17
87	A protein database constructed from low-coverage genomic sequence of Bacillus megaterium and its use for accelerated proteomic analysis. Journal of Biotechnology, 2006, 124, 486-495.	1.9	16
88	Proteomic characterization of transient expression and secretion of a stress-related metalloprotease in high cell density culture of Bacillus megaterium. Journal of Biotechnology, 2006, 126, 313-324.	1.9	16
89	Decorating Tetrathiafulvalene (TTF) with Fluorinated Phenyls through Sulfur Bridges: Facile Synthesis, Properties, and Aggregation through Fluorine Interactions. Chemistry - A European Journal, 2014, 20, 9650-9656.	1.7	16
90	Modelling ground movements near a pressurised tunnel heading in drained granular soil. Computers and Geotechnics, 2018, 104, 152-166.	2.3	16

#	Article	IF	CITATIONS
91	Isoleucyl-tRNA synthetase mutant based whole-cell biosensor for high-throughput selection of isoleucine overproducers. Biosensors and Bioelectronics, 2021, 172, 112783.	5.3	16
92	Comprehensively dissecting the hub regulation of PkaC on highâ€productivity and pellet macromorphology in citric acid producing <i>Aspergillus niger</i> . Microbial Biotechnology, 2022, 15, 1867-1882.	2.0	16
93	A food-grade expression system for d-psicose 3-epimerase production in Bacillus subtilis using an alanine racemase-encoding selection marker. Bioresources and Bioprocessing, 2017, 4, 9.	2.0	15
94	Growth-coupled evolution of phosphoketolase to improve l-glutamate production by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2019, 103, 8413-8425.	1.7	14
95	Application of Dynamic Regulation to Increase L-Phenylalanine Production in Escherichia coli. Journal of Microbiology and Biotechnology, 2019, 29, 923-932.	0.9	14
96	Comprehensive optimization of the metabolomic methodology for metabolite profiling of Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102, 7113-7121.	1.7	13
97	Discovery and investigation of a new, second triose phosphate isomerase in Klebsiella pneumoniae. Journal of Biotechnology, 2006, 125, 462-473.	1.9	12
98	Development of thermodynamic optimum searching (TOS) to improve the prediction accuracy of flux balance analysis. Biotechnology and Bioengineering, 2013, 110, 914-923.	1.7	12
99	Inclusion complexes of fullerenes with flexible tetrathiafulvalene derivatives bearing four aryls through sulfur bridges. Journal of Materials Chemistry C, 2014, 2, 8071-8076.	2.7	12
100	In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology. PLoS ONE, 2016, 11, e0151149.	1.1	12
101	Experimental Research on the Transverse Effective Bending Rigidity of Shield Tunnels. Advances in Civil Engineering, 2019, 2019, 1-17.	0.4	12
102	Engineering synthetic auxotrophs for growth-coupled directed protein evolution. Trends in Biotechnology, 2022, 40, 773-776.	4.9	12
103	The adjustment of bandgap and coplanarity of diketopyrrolopyrrole-based copolymers through fine-tuning of the conjugated backbones and applications in thin film field effect transistors. Journal of Materials Chemistry C, 2016, 4, 9359-9365.	2.7	11
104	Evaluation of Aspergillus niger Six Constitutive Strong Promoters by Fluorescent-Auxotrophic Selection Coupled with Flow Cytometry: A Case for Citric Acid Production. Journal of Fungi (Basel,) Tj ETQq0 0 0	rg B. Ђ/Ovei	lo ck 10 Tf 50
105	Donor–acceptor type co-crystals of arylthio-substituted tetrathiafulvalenes and fullerenes. Beilstein Journal of Organic Chemistry, 2015, 11, 1043-1051.	1.3	10
106	Explanation for twin tunnelling-induced surface settlements by changes in soil stiffness on account of stress history. Tunnelling and Underground Space Technology, 2019, 85, 160-169.	3.0	10
107	Copper ion salts of arylthiotetrathiafulvalenes: synthesis, structure diversity and magnetic properties. Beilstein Journal of Organic Chemistry, 2015, 11, 850-859.	1.3	9
108	Characterization of a new lysine decarboxylase from Aliivibrio salmonicida for cadaverine production at alkaline pH. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S88-S94.	1.8	9

#	Article	IF	CITATIONS
109	In situ hydrosilane reduction and preparation of gold nanoparticle–gel glass composites with nonlinear optical properties. Journal of Materials Chemistry C, 2018, 6, 5624-5629.	2.7	9
110	Strong optical limiting properties of Ormosil gel glasses doped with silver nano-particles. New Journal of Chemistry, 2019, 43, 6274-6278.	1.4	9
111	Promoting Lignin Valorization by Coping with Toxic C1 Byproducts. Trends in Biotechnology, 2021, 39, 331-335.	4.9	9
112	Essential O2-responsive genes of Pseudomonas aeruginosa and their network revealed by integrating dynamic data from inverted conditions. Integrative Biology (United Kingdom), 2014, 6, 215.	0.6	8
113	Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain. Journal of Biotechnology, 2015, 207, 10-11.	1.9	8
114	Broadband optical limiting and nonlinear optical graphene oxide co-polymerization Ormosil glasses. Advanced Composites and Hybrid Materials, 2018, 1, 397-403.	9.9	8
115	Eulerian finite element model for stability analysis of circular tunnels in undrained clay. Engineering Failure Analysis, 2018, 91, 216-224.	1.8	8
116	Enhancing thermostability and removing hemin inhibition of Rhodopseudomonas palustris 5-aminolevulinic acid synthase by computer-aided rational design. Biotechnology Letters, 2019, 41, 181-191.	1.1	8
117	A Library of Aspergillus niger Chassis Strains for Morphology Engineering Connects Strain Fitness and Filamentous Growth With Submerged Macromorphology. Frontiers in Bioengineering and Biotechnology, 2021, 9, 820088.	2.0	8
118	Removal of Feedback Inhibition of Corynebacterium glutamicum Phosphoenolpyruvate Carboxylase by Addition of a Short Terminal Peptide. Biotechnology and Bioprocess Engineering, 2018, 23, 72-78.	1.4	7
119	Mutations in Peptidoglycan Synthesis Gene <i>ponA</i> Improve Electrotransformation Efficiency of <i>Corynebacterium glutamicum</i> ATCC 13869. Applied and Environmental Microbiology, 2018, 84, .	1.4	7
120	Migratory Shift in Oxidative Cyclodehydrogenation Reaction of Tetraphenylethylenes Containing Electronâ€Rich THDTAP Moiety. Chemistry - an Asian Journal, 2019, 14, 1860-1869.	1.7	7
121	Draft Genome Sequence of Lactococcus lactis subsp. <i>lactis</i> Strain YF11. Genome Announcements, 2013, 1, .	0.8	6
122	Efficient Biosynthesis of Succinate from Paper Mill Wastewater by Engineered Escherichia coli. Applied Biochemistry and Biotechnology, 2019, 189, 1195-1208.	1.4	6
123	Transcriptome analysis reveals the roles of nitrogen metabolism and sedoheptulose bisphosphatase pathway in methanolâ€dependent growth of <i>Corynebacterium glutamicum</i> . Microbial Biotechnology, 2021, 14, 1797-1808.	2.0	6
124	Development of a Hyperosmotic Stress Inducible Gene Expression System by Engineering the MtrA/MtrB-Dependent NCgl1418 Promoter in Corynebacterium glutamicum. Frontiers in Microbiology, 2021, 12, 718511.	1.5	6
125	Identification of a new gene yecC involved in threonine export in Escherichia coli. FEMS Microbiology Letters, 2017, 364, .	0.7	5
126	Find_tfSBP: find thermodynamics-feasible and smallest balanced pathways with high yield from large-scale metabolic networks. Scientific Reports, 2017, 7, 17334.	1.6	5

#	Article	IF	CITATIONS
127	Crystal structure of 5-Aminolevulinate synthase HemA from Rhodopseudomonas palustris presents multiple conformations. Biochemical and Biophysical Research Communications, 2022, 609, 100-104.	1.0	5
128	Metabolic Networks. , 0, , 233-253.		4
129	Driving Green Growth: Innovation at the Tianjin Institute of Industrial Biotechnology. Industrial Biotechnology, 2015, 11, 151-153.	0.5	4
130	Construction and Analysis of the Model of Energy Metabolism in E. coli. PLoS ONE, 2013, 8, e55137.	1.1	4
131	Mechanism and countermeasures of domino-like failure in underground pre-fabricated structures. Engineering Failure Analysis, 2020, 115, 104603.	1.8	4
132	Structures and physical properties of magnetic organic conductors based on bent donor molecule EDT-EDSe-TTFVS. Synthetic Metals, 2012, 162, 1809-1814.	2.1	3
133	Modeling and parameters identification of 2-keto-l-gulonic acid fed-batch fermentation. Bioprocess and Biosystems Engineering, 2015, 38, 605-614.	1.7	3
134	Efficient production of trans-3-hydroxyproline by a bacterial trans-3-proline hydroxylase and characterization of enzymatic properties. Biochemical Engineering Journal, 2019, 147, 57-61.	1.8	3
135	Metallated Graphynes as a New Class of Photofunctional 2D Organometallic Nanosheets. Angewandte Chemie, 2021, 133, 11427-11435.	1.6	3
136	Quasi-one-dimensional (Q1D) organic Mott insulators based on bent donor molecule EDO-EDSe-TTFVS. Synthetic Metals, 2012, 162, 2342-2348.	2.1	2
137	The use of Eulerian finite element method in face stability analysis of shield tunnels in undrained clay. European Journal of Environmental and Civil Engineering, 2019, , 1-12.	1.0	2
138	Volumetric behaviour of subsurface ground due to tunnelling in completely drained granular soil. Computers and Geotechnics, 2019, 116, 103217.	2.3	2
139	Random forest method-based prediction and control of bridge pier displacements during construction of two overlapped EPBM tunnels. European Journal of Environmental and Civil Engineering, 2022, 26, 2273-2293.	1.0	2
140	Settlement of a pile under cyclic lateral loads in dry sand. Geotechnique, 2023, 73, 561-571.	2.2	2
141	Directed Evolution and Rational Design of Mechanosensitive Channel MscCG2 for Improved Glutamate Excretion Efficiency. Journal of Agricultural and Food Chemistry, 2021, 69, 15660-15669.	2.4	2
142	Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing. Biodesign Research, 2022, 2022, .	0.8	2
143	CRISPR/Cas9-mediated ssDNA Recombineering in Corynebacterium glutamicum. Bio-protocol, 2018, 8, e3038.	0.2	1
144	Front Cover Image, Volume 116, Number 11, November 2019. Biotechnology and Bioengineering, 2019, 116, i.	1.7	0

JIBIN SUN

#	Article	IF	CITATIONS
145	Developing Synthetic Methylotrophs by Metabolic Engineering-Guided Adaptive Laboratory Evolution. Advances in Biochemical Engineering/Biotechnology, 2022, , 1.	0.6	Ο