Adolfo Paz-Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2494445/publications.pdf

Version: 2024-02-01

623734 713466 48 625 14 21 citations g-index h-index papers 48 48 48 463 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities. Parasitologia, 2022, 2, 37-44.	1.3	5
2	Evaluation of nematophagous fungal mycelial growth and interactions with bovine gastrointestinal parasitic nematodes. German Journal of Veterinary Research, 2022, 2, 39-45.	1.2	O
3	Formulating fungal spores to prevent infection by trichostrongylids in a zoological park: Practical approaches to a persisting problem. Biological Control, 2021, 152, 104466.	3.0	5
4	Implementation of Mini-FLOTAC in Routine Diagnosis of Coccidia and Helminth Infections in Domestic and Exotic Birds. Veterinary Sciences, $2021, 8, 160$.	1.7	5
5	Recent Advances in the Control of Helminths of Domestic Animals by Helminthophagous Fungi. Parasitologia, 2021, 1, 168-176.	1.3	27
6	Gastrointestinal Parasitism in Miranda Donkeys: Epidemiology and Selective Control of Strongyles Infection in the Northeast of Portugal. Animals, 2021, 11, 155.	2.3	6
7	The Control of Zoonotic Soil-Transmitted Helminthoses Using Saprophytic Fungi. Pathogens, 2020, 9, 1071.	2.8	6
8	The efficacy of predatory fungi on the control of gastrointestinal parasites in domestic and wild animalsâ€"A systematic review. Veterinary Parasitology, 2020, 283, 109173.	1.8	18
9	Integrating the control of helminths in dairy cattle: Deworming, rotational grazing and nutritional pellets with parasiticide fungi. Veterinary Parasitology, 2020, 278, 109038.	1.8	14
10	Gastrointestinal Parasites of Free-Range Chickens – A Worldwide Issue. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Veterinary Medicine, 2019, 76, 110.	0.0	5
11	Biological control of soil transmitted helminths (STHs) in a zoological park by using saprophytic fungi. Biological Control, 2018, 122, 24-30.	3.0	13
12	Potential Usefulness of Filamentous Fungi to Prevent Zoonotic Soil-Transmitted Helminths. Vector-Borne and Zoonotic Diseases, 2018, 18, 690-696.	1.5	10
13	Implementation of Biological Control to the Integrated Control of Strongyle Infection among Wild Captive Equids in a Zoological Park. BioMed Research International, 2018, 2018, 1-7.	1.9	10
14	A combined effort to avoid strongyle infection in horses in an oceanic climate region: rotational grazing and parasiticidal fungi. Parasites and Vectors, 2018, 11, 240.	2.5	16
15	Effect of the Filamentous Fungus <i>Mucor circinelloides</i> On The Development of Eggs of the Rumen Fluke <i>Calicophoron daubneyi</i> (Paramphistomidae). Journal of Parasitology, 2017, 103, 199-206.	0.7	6
16	Isolation of Ovicidal Fungi from Fecal Samples of Captive Animals Maintained in a Zoological Park. Journal of Fungi (Basel, Switzerland), 2017, 3, 29.	3.5	13
17	Feeding horses with industrially manufactured pellets with fungal spores to promote nematode integrated control. Veterinary Parasitology, 2016, 229, 37-44.	1.8	22
18	The capability of the fungus Mucor circinelloides to maintain parasiticidal activity after the industrial feed pelleting enhances the possibilities of biological control of livestock parasites. Biological Control, 2016, 92, 38-44.	3.0	17

#	Article	IF	Citations
19	Riesgo de exposiciÃ ³ n a Fasciola hepÃ;tica en ganado vacuno en extensivo de Uruguay y Portugal determinado mediante ELISA y un antÃgeno recombinante. Archivos De Medicina Veterinaria, 2015, 47, 201-208.	0.2	4
20	Analysis of the effect of soil saprophytic fungi on the eggs of Baylisascaris procyonis. Parasitology Research, 2015, 114, 2443-2450.	1.6	19
21	Potential use of <i>Mucor circinelloides </i> for the biological control of certain helminths affecting livestock reared in a care farm. Biocontrol Science and Technology, 2015, 25, 1443-1452.	1.3	15
22	Determination of exposure to Fasciola hepatica in horses from Uruguay using a recombinant-based ELISA. Veterinarni Medicina, 2015, 60, 483-488.	0.6	5
23	Zoonotic Neglected Tropical Diseases: New Approaches to Combat Old Enemies. BioMed Research International, 2014, 2014, 1-2.	1.9	1
24	Antigen characterization from second instars of oestrid bot flies for the detection of antiâ€≺i>Cephenemyia stimulator i> antibodies by <scp>ELISA</scp> in roe deer (<i>Capreolus) Tj ETQq0 0</i>	0 rgB T. \$Over	locsk 10 Tf 50
25	Reliability of an ELISA Test for Diagnosing Oestrosis in Iberian Ibex. Journal of Parasitology, 2014, 100, 235-238.	0.7	5
26	Trematodes enhance the development of the nematode-trapping fungus Arthrobotrys (Duddingtonia) flagrans. Fungal Biology, 2013, 117, 540-544.	2.5	8
27	A Preliminary Study of the Biological Control of Strongyles Affecting Equids in a Zoological Park. Journal of Equine Veterinary Science, 2013, 33, 1115-1120.	0.9	15
28	Relationship between exposure to Fasciola hepatica in roe deer (Capreolus capreolus) and cattle extensively reared in an endemic area. Research in Veterinary Science, 2013, 95, 1031-1035.	1.9	13
29	Infection by Paramphistomidae trematodes in cattle from two agricultural regions in NW Uruguay and NW Spain. Veterinary Parasitology, 2013, 191, 165-171.	1.8	16
30	Epidemiology, chronobiology and taxonomic updates of Rhinoestrus spp. infestation in horses of Sardinia Isle, Western Mediterranean (Italy). Veterinary Parasitology, 2013, 192, 240-246.	1.8	8
31	The efficacy of four anthelmintics against Calicophoron daubneyi in naturally infected dairy cattle. Veterinary Parasitology, 2013, 197, 126-129.	1.8	38
32	Mixed Production of Filamentous Fungal Spores for Preventing Soil-Transmitted Helminth Zoonoses: A Preliminary Analysis. BioMed Research International, 2013, 2013, 1-8.	1.9	23
33	Detection of Antibodies In Wild Ruminants To Evaluate Exposure To Liver Trematodes. Journal of Parasitology, 2012, 98, 754-759.	0.7	11
34	Preliminary Analysis of the Results of Selective Therapy Against Strongyles in Pasturing Horses. Journal of Equine Veterinary Science, 2012, 32, 274-280.	0.9	16
35	Exposure to Sarcocystis spp. in horses from Spain determined by Western blot analysis using Sarcocystis neurona merozoites as heterologous antigen. Veterinary Parasitology, 2012, 185, 301-304.	1.8	11
36	Enzyme-linked immunosorbent assays for the detection of equine antibodies specific to a recombinant Fasciola hepatica surface antigen in an endemic area. Parasitology Research, 2012, 110, 1001-1007.	1.6	16

#	Article	IF	CITATIONS
37	Efficacy of Ivermectin Pour-on Against Nematodes Infecting Foals on Pasture: Coprological and Biochemical Analysis. Journal of Equine Veterinary Science, 2011, 31, 530-535.	0.9	8
38	Ability of the fungus Duddingtonia flagrans to adapt to the cyathostomin egg-output by spreading chlamydospores. Veterinary Parasitology, 2011, 179, 277-282.	1.8	47
39	Prevalence of mixed trematode infections in an abattoir receiving cattle from northern Portugal and northâ€west Spain. Veterinary Record, 2011, 168, 408-408.	0.3	50
40	Isolation of Potentially Useful Antigens from Cyathostomin Third-Stage Larvae by Using a Fast Protein Liquid Chromatography One-Step Method. Vaccine Journal, 2011, 18, 1462-1466.	3.1	1
41	A novel second instar Gasterophilus excretory/secretory antigen-based ELISA for the diagnosis of gasterophilosis in grazing horses. Veterinary Parasitology, 2010, 171, 314-320.	1.8	8
42	An Approach of the Laboratory to the Field: Assessment of the Influence of Cattle Management on the Seroprevalence of Fascioliasis by Using Polyclonal- and Recombinant-Based ELISAs. Journal of Parasitology, 2010, 96, 626-631.	0.7	14
43	Application of the Analysis of Serum Antibodies (Immunoglobulins M and G) to Estimate the Seroprevalence of Ovine Oestrosis and to Evaluate the Effect of Chemotherapy. Journal of Medical Entomology, 2010, 47, 477-481.	1.8	6
44	A recombinant-based ELISA evaluating the efficacy of netobimin and albendazole in ruminants with naturally acquired fascioliasis. Veterinary Journal, 2009, 182, 73-78.	1.7	10
45	Silvopastoralism and autochthonous equine livestock: Analysis of the infection by endoparasites. Veterinary Parasitology, 2009, 164, 357-362.	1.8	16
46	HumanOestrussp. Infection, Canary Islands. Emerging Infectious Diseases, 2007, 13, 950-952.	4.3	10
47	Risk periods of infection by Calicophoron daubneyi (Digenea:Paramphistomidae) in cattle from oceanic climate areas. Parasitology Research, 2007, 101, 339-342.	1.6	28
48	CONTROL DE PARASITOSIS EQUINAS: SOSTENIBILIDAD VS. FARMACOLOGÃA. , 0, , 166-176.		0