List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2493745/publications.pdf Version: 2024-02-01

FILIDDO LEVI

#	Article	IF	CITATIONS
1	Coherent phase transfer for real-world twin-field quantum key distribution. Nature Communications, 2022, 13, 157.	12.8	44
2	Optically Loaded Strontium Lattice Clock With a Single Multi-Wavelength Reference Cavity. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	9
3	Intercontinental comparison of optical atomic clocks through very long baseline interferometry. Nature Physics, 2021, 17, 223-227.	16.7	31
4	Kr-Based Buffer Gas for Rb Vapor-Cell Clocks. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 1442-1447.	3.0	7
5	Loaded Microwave Cavity for Compact Vapor-Cell Clocks. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 872-879.	3.0	4
6	INRIM Sr Optical Clock: An Optically Loaded Apparatus for High-Stability Metrology. , 2021, , .		1
7	Absolute frequency measurement of the ¹ S ₀ – ³ P ₀ transition of ¹⁷¹ Yb with a link to international atomic time. Metrologia, 2020, 57, 035007.	1.2	46
8	Intensity Detection Noise in Pulsed Vapor-Cell Frequency Standards. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1074-1079.	3.0	12
9	Coherent Interferometry over Telecom Networks for Time-Frequency Distribution and Geophysical Sensing. , 2020, , .		1
10	Sideband-Enhanced Cold Atomic Source for Optical Clocks. Physical Review Applied, 2020, 13, .	3.8	23
11	Tunable UV spectrometer for Doppler broadening thermometry of mercury. Optics Letters, 2020, 45, 3693.	3.3	6
12	Common-clock very long baseline interferometry using a coherent optical fiber link. Optica, 2020, 7, 1031.	9.3	46
13	A Coherent Optical Fiber Link for Very Long Baseline Interferometry. , 2020, , .		0
14	Optical Frequency Transfer over Submarine Fibers. , 2020, , .		1
15	Spectral purity transfer with 5 × 10 ^{â^'17} instability at 1 s using a multibranch Er:fiber frequency comb. Metrologia, 2019, 56, 045008.	1.2	12
16	A Coherent Fibre Link for Space Geodesy. , 2019, , .		0
17	Optical Atomic Clocks: From International Timekeeping to Gravity Potential Measurement. , 2019, , .		0
18	Geodesy and metrology with a transportable optical clock. Nature Physics, 2018, 14, 437-441.	16.7	316

#	Article	IF	CITATIONS
19	Time and Frequency Distribution over fibre for Geodesy, Seismology and Industry. , 2018, , .		1
20	Optical frequency transfer over submarine fiber links. Optica, 2018, 5, 893.	9.3	34
21	Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science, 2018, 361, 486-490.	12.6	196
22	Metrological-grade tunable coherent source in the mid-infrared for molecular precision spectroscopy. , 2018, , .		0
23	Absolute frequency measurement of the \${{}^{1}}{{ext{S}}_{0}} – \${{}^{3}}{{ext{P}}_{0}}\$ transition of ¹⁷¹ Yb. Metrologia, 2017, 54, 102-112.	1.2	44
24	A VLBI experiment using a remote atomic clock via a coherent fibre link. Scientific Reports, 2017, 7, 40992.	3.3	91
25	CLONETS - clock network services: Strategy and innovation for clock services over optical-fibre networks. , 2017, , .		4
26	The Italian optical link for time and frequency. , 2017, , .		3
27	Multiple lasers stabilization on a single three color optical cavity. , 2017, , .		Ο
28	CLONETS – Clock network services strategy and innovation for clock services over optical-fibre networks. , 2017, , .		3
29	A strontium optical lattice clock apparatus for precise frequency metrology and beyond. , 2017, , .		4
30	Laser intensity noise transfer for pulsed vapor-cell clocks with optical detection. , 2017, , .		1
31	Absolute frequency measurement of the ¹⁷¹ Yb optical lattice clock at INRIM. , 2017, , .		0
32	Effect of a timebase mismatch in two-way optical frequency transfer. Metrologia, 2017, 54, 805-809.	1.2	5
33	Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique. Optics Letters, 2017, 42, 1970.	3.3	20
34	Comb-assisted cavity ring-down spectroscopy of a buffer-gas-cooled molecular beam. Physical Chemistry Chemical Physics, 2016, 18, 16715-16720.	2.8	23
35	Metrological characterization of INRIM's Yb lattice clock. , 2016, , .		0
36	Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination. Optics Express, 2016, 24, 11865.	3.4	30

#	Article	IF	CITATIONS
37	Ytterbium optical lattice clock at INRIM. , 2015, , .		1
38	A coherent fiber link for very long baseline interferometry. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1907-1912.	3.0	27
39	Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain. Metrologia, 2014, 51, 270-284.	1.2	113
40	First accuracy evaluation of NIST-F2. Metrologia, 2014, 51, 174-182.	1.2	153
41	Yellow laser performance of Dy^3+ in co-doped Dy,Tb:LiLuF_4. Optics Letters, 2014, 39, 6628.	3.3	91
42	Efficient frequency doubling at 399  nm. Applied Optics, 2014, 53, 3388.	1.8	28
43	Industrialisation approach of the pop atomic clock for application to GNSS. , 2014, , .		3
44	Distributed Raman Optical Amplification in Phase Coherent Transfer of Optical Frequencies. IEEE Photonics Technology Letters, 2013, 25, 1711-1714.	2.5	20
45	Ramsey-fringe shape in an alkali-metal vapor cell with buffer gas. Physical Review A, 2013, 88, .	2.5	11
46	Active disturbance rejection control of temperature for ultrastable optical cavities. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 273-280.	3.0	17
47	A high sensitivity fiber optic gyroscope on multiplexed telecommunication network. , 2013, , .		0
48	Improved set-up for the ytterbium optical clock at INRIM. , 2013, , .		2
49	Optical frequency link between Torino and Firenze for remote comparison between Yb and Sr optical clocks. , 2012, , .		1
50	Realization of an ultrastable 578-nm laser for an Yb lattice clock. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 426-431.	3.0	29
51	Active Disturbance Rejection Control: Application to the temperature stabilization of ultra-stable cavities. , 2012, , .		1
52	Pulsed optically pumped rubidium clock with high frequency-stability performance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 457-462.	3.0	24
53	Enhanced temperature sensitivity in vapor-cell frequency standards. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 2646-2654.	3.0	35
54	Microwave cavities for vapor cell frequency standards. Review of Scientific Instruments, 2011, 82, 074703.	1.3	32

#	Article	IF	CITATIONS
55	Planar-waveguide external cavity laser stabilization for an optical link with 10 ⁻¹⁹ frequency stability. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 2582-2587.	3.0	43
56	Medium-long term frequency stability of pulsed vapor cell clocks. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1524-1534.	3.0	26
57	Cryogenic fountain development at NIST and INRIM: preliminary characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 600-605.	3.0	20
58	Pulsed optically pumped Rb clock with optical detection: First results. , 2010, , . Multistee preparation into a single Zeeman sublevel in a simplimath		4
59	xmlns:mm]="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mmultiscripts><mml:mtext>Rb</mml:mtext><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>87</mml:mn></mml:mrow></mml:none </mml:mprescripts </mml:mmultiscripts></mml:mrow> vapor	2.5	14
60	Pulsed optically pumped <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mmultiscripts><mml:mi mathvariant="normal">Rb</mml:mi><mml:mprescripts /><mml:none></mml:none><mml:mn>87</mml:mn></mml:mprescripts </mml:mmultiscripts></mml:math> vapor cell frequency standard: A multilevel approach. Physical Review A, 2009, 79, .	2.5	47
61	The cryogenic fountain ITCsF2. , 2009, , .		3
62	RF spectrum of a carrier with a random phase modulation of arbitrary slope. Metrologia, 2008, 45, 313-324.	1.2	65
63	Electronics for the Pulsed Rubidium Clock: Design and Characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 1731-1740.	3.0	32
64	Frequency-Stability Performances of the Pulsed Optically Pumped Rubidium Clock: Recent Results and Future Perspectives. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 378-382.	4.7	15
65	Microwave leakage-induced frequency shifts in the primary frequency Standards NIST-F1 and IEN-CSF1. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2376-2385.	3.0	32
66	The pulsed rubidium clock. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 525-529.	3.0	24
67	Power dependence of the frequency bias caused by spurious components in the microwave spectrum in atomic fountains. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1584-1589.	3.0	25
68	Physics characterization and frequency stability of the pulsed rubidium maser. Physical Review A, 2006, 74, .	2.5	53
69	Spin-exchange frequency shift in alkali-metal-vapor cell frequency standards. Physical Review A, 2006, 73, .	2.5	35
70	Stark-shift measurement of theS1â^•22,F=3→F=4hyperfine transition ofCs133. Physical Review A, 2005, 71, .	2.5	23
71	Low-noise electronic design for the /sup 87/Rb coherent population trapping maser. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1923-1930.	3.0	7
72	Measurement of the blackbody radiation shift of theCs133hyperfine transition in an atomic fountain. Physical Review A, 2004, 70, .	2.5	29

#	Article	IF	CITATIONS
73	Pulsed optically pumped frequency standard. Physical Review A, 2004, 70, .	2.5	51
74	Blackbody radiation shift of theCs133hyperfine transition frequency. Physical Review A, 2004, 69, .	2.5	30
75	Coherent-population-trapping maser: Noise spectrum and frequency stability. Physical Review A, 2004, 70, .	2.5	32
76	IEN-CsF1 accuracy evaluation and two-way frequency comparison. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 1216-1224.	3.0	25
77	Propagation and density effects in the coherent-population-trapping maser. Physical Review A, 2002, 65, ·	2.5	22
78	Slow light and superluminality in the coherent population trapping maser. Physical Review A, 2002, 66,	2.5	19
79	Rabi resonances in the $\hat{\mathbf{b}}$ excitation scheme. Physical Review A, 2002, 66, .	2.5	30
80	Subcollisional linewidth observation in the coherent-population-trapping Rb maser. Physical Review A, 2002, 65, .	2.5	12
81	Theory of the coherent population trapping maser: â€,A strong-field self-consistent approach. Physical Review A, 2000, 62, .	2.5	23
82	Coherent microwave emission in cesium under coherent population trapping. Physical Review A, 1999, 59, R12-R15.	2.5	35
83	Coherent population trapping in cesium: Dark lines and coherent microwave emission. Physical Review A, 1998, 58, 2345-2358.	2.5	185