
Koichi Kusakabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2493734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peculiar Localized State at Zigzag Graphite Edge. Journal of the Physical Society of Japan, 1996, 65, 1920-1923.	1.6	2,569
2	Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Physical Review B, 2005, 71, .	3.2	593
3	Magnetic nanographite. Physical Review B, 2003, 67, .	3.2	467
4	Theoretical Prediction of Synthesis Methods to Create Magnetic Nanographite. Journal of the Physical Society of Japan, 2004, 73, 656-663.	1.6	65
5	Role of edge geometry and chemistry in the electronic properties of graphene nanostructures. Faraday Discussions, 2014, 173, 173-199.	3.2	58
6	Direct imaging of monovacancy-hydrogen complexes in a single graphitic layer. Physical Review B, 2014, 89, .	3.2	44
7	Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination. Physical Review B, 2013, 87, .	3.2	41
8	Finite-size scaling of string order parameters characterizing the Haldane phase. Physical Review B, 2008, 78, .	3.2	31
9	Magnetic properties of nanographite with modified zigzag edges. Journal of Physics and Chemistry of Solids, 2004, 65, 119-122.	4.0	25
10	Magnetism of Nanometer-Scale Graphite with Edge or Topological Defects. Molecular Crystals and Liquid Crystals, 1997, 305, 445-454.	0.3	24
11	A Rigorous Extension of the Kohn-Sham Equation for Strongly Correlated Electron Systems. Journal of the Physical Society of Japan, 2001, 70, 2038-2048.	1.6	21
12	Ab-initio Calculations of Lattice Dynamics and Superconductivity in FCC Lithium and Iodine and BCC Tellurium. Journal of the Physical Society of Japan, 2005, 74, 3227-3235.	1.6	18
13	First-Principles Study of NaFeAs, NaCoAs, and NaNiAs. Journal of the Physical Society of Japan, 2009, 78, 124712.	1.6	18
14	Magnetic structure of graphite ribbon. European Physical Journal D, 1996, 46, 1865-1866.	0.4	16
15	General Rule and Materials Design of Negative Effective <i>U</i> System for High- <i>T</i> _c Superconductivity. Applied Physics Express, 0, 1, 081703.	2.4	16
16	Localized electronic states on graphite edge. European Physical Journal D, 1996, 46, 2429-2430.	0.4	15
17	Tunable induced magnetic moment and in-plane conductance of graphene in Ni/graphene/Ni nano-spin-valve-like structure: A first principles study. Carbon, 2019, 143, 828-836.	10.3	13
18	Pair-Hopping Mechanism for Layered Superconductors. Journal of the Physical Society of Japan, 2009, 78, 114716.	1.6	11

Коісні Кизакаве

#	Article	IF	CITATIONS
19	A self-consistent first-principles calculation scheme for correlated electron systems. Journal of Physics Condensed Matter, 2007, 19, 445009.	1.8	10
20	A Determination Method of the Work function using the Slab Model with a First-Principles Electronic Structure Calculation. E-Journal of Surface Science and Nanotechnology, 2008, 6, 103-106.	0.4	9
21	Material-Dependent Screening of Coulomb Interaction in Single-Layer Cuprates. Journal of the Physical Society of Japan, 2018, 87, 114701.	1.6	9
22	Two-Site Shift Product Wave Function Renormalization Group Method Applied to Quantum Systems. Journal of the Physical Society of Japan, 2008, 77, 114002.	1.6	9
23	A gapless charge mode induced by the boundary states in the half-filled Hubbard open chain. Journal of Physics A, 1998, 31, 7315-7330.	1.6	8
24	Determination of boundary scattering, magnon-magnon scattering, and the Haldane gap in Heisenberg spin chains. Physical Review B, 2011, 84, .	3.2	8
25	Theoretical Analysis of Pseudodegenerate Zero-Energy Modes in Vacancy-Centered Hexagonal Armchair Nanographene. Journal of the Physical Society of Japan, 2016, 85, 084703.	1.6	8
26	Systematic Study of the Effect of H Adsorption on the Electron-Transfer Rate in Graphene. Journal of Computational and Theoretical Nanoscience, 2016, 13, 4883-4887.	0.4	8
27	Interplanar stiffness in defect-free monocrystalline graphite. Physical Review Materials, 2020, 4, .	2.4	7
28	A new ferromagnetic material excluding transition metals: CaAs in a distorted zinc-blende structure. AIP Conference Proceedings, 2005, , .	0.4	6
29	Charge-density waves, incommensurate modulations and superconductivity in phosphorus and iodine. High Pressure Research, 2008, 28, 459-467.	1.2	6
30	Can Corrugated Si-Planes of CaSi2 Flatten under High Pressure?. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 193-195.	0.0	6
31	Effect of topological defects in graphite. European Physical Journal D, 1996, 46, 2715-2716.	0.4	5
32	Bethe-Ansatz Analysis of the Extended AB Period in the One-Dimensional Hubbard Model. Journal of the Physical Society of Japan, 1997, 66, 2075-2085.	1.6	4
33	Numerical Study of the Magnetization Process of Nanoscale Ferrimagnetic Ring Mn6R6. Journal of the Physical Society of Japan, 2004, 73, 1597-1601.	1.6	4
34	Extended String Order Parameter in the (<i>S</i> =1, 1/2) Mixed Spin Chain. Journal of the Physical Society of Japan, 2007, 76, 084714.	1.6	4
35	Magnetization Process of (S= 3/2,S= 1) Anisotropic Ferrimagnetic Spin Chain. Progress of Theoretical Physics Supplement, 2005, 159, 148-152.	0.1	3
36	Theorems on ground-state phase transitions in Kohn–Sham models given by the Coulomb density functional. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 135305.	2.1	3

Коісні Кизакаве

#	Article	IF	CITATIONS
37	A Theoretical Study Showing K ₂ picene as a Parent Semiconductor for Organic Superconductivity. Journal of the Physical Society of Japan, 2012, 81, SB071.	1.6	3
38	Self-Doping Effect Arising from Electron Correlations in Multilayer Cuprates. Journal of the Physical Society of Japan, 2017, 86, 084707.	1.6	3
39	Structure Deformation and Level Splitting in Vacancy-Centered Hexagonal Armchair Nanographene. Journal of the Physical Society of Japan, 2017, 86, 034802.	1.6	3
40	Superconductivity arising from layer differentiation in multilayer cuprates. Physical Review B, 2018, 98, .	3.2	3
41	Spin-Current Control by Induced Electric Polarization Reversal in Ni/hBN/Ni: A Cross-Correlation Material. ACS Applied Electronic Materials, 2020, 2, 1689-1699.	4.3	3
42	Extended AB Period Study of the Electron Pairing Transition int-J Ladders. Journal of Low Temperature Physics, 1996, 105, 609-614.	1.4	2
43	Topological Defect and Edge in Graphite. Nanometer Effect on .PI. Electron System Hyomen Kagaku, 1998, 19, 35-42.	0.0	2
44	First-Principles Electronic Structure Calculation of LaCo ₂ in MgCu ₂ Structure. Journal of the Physical Society of Japan, 2007, 76, 084711.	1.6	2
45	The Trimer State of a (S=1, S=1/2) Ferrimagnetic Spin Chain as the Exact Ground State. Journal of the Physical Society of Japan, 2007, 76, 065002.	1.6	2
46	Hyperbolic Deformation Applied to <i>S</i> = 1 Spin Chains – Scaling Relation in Excitation Energy –. Journal of the Physical Society of Japan, 2011, 80, 094001.	1.6	2
47	Edge States Caused by Shift of Dirac Points at the Armchair Edge of Distorted Nanographene. Journal of the Physical Society of Japan, 2018, 87, 084706.	1.6	2
48	Counting the Zero Modes and Magnetic Moment by Topology of a Phenalenyl-Tessellation Molecule with Vacancies. Journal of the Physical Society of Japan, 2019, 88, 124707.	1.6	2
49	Material Optimization of Potential High- <i>T</i> _c Superconducting Single-Layer Cuprates. Journal of the Physical Society of Japan, 2021, 90, 054705.	1.6	2
50	Zero-energy modes in a super-chiral nanographene network of phenalenyl-tessellation molecules. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 408, 127462.	2.1	2
51	High magnetoresistance of a hexagonal boron nitride–graphene heterostructure-based MTJ through excited-electron transmission. Nanoscale Advances, 2021, 4, 117-124.	4.6	2
52	Colossal in-plane magnetoresistance ratio of graphene sandwiched with Ni nanostructures. RSC Advances, 2022, 12, 13985-13991.	3.6	2
53	Numerical study of nanoscale ferrimagnetic ring Mn6R6. Journal of Physics Condensed Matter, 2004, 16, S5739-S5742.	1.8	1
54	Size dependence of the magnetic properties in ferrimagnetic rings MnxRx (x=2–8). Polyhedron, 2005, 24, 2396-2399.	2.2	1

Коісні Кизакаве

#	Article	IF	CITATIONS
55	STM/STS observations of zigzag and armchair edges of graphite. Tanso, 2007, 2007, 166-173.	0.1	1
56	S = 1 antiferromagnetic electron-spin systems on hydrogenated phenalenyl-tessellation molecules for material-based quantum-computation resources. Applied Physics Express, 2021, 14, 121005.	2.4	1
57	First-Principles Study of Epitaxial Growth of Zinc-Blende CrAs on GaAs Substrates. Materials Research Society Symposia Proceedings, 2004, 859, 46.	0.1	0
58	A graphite-diamond hybrid structure as a half-metallic nano wire. AIP Conference Proceedings, 2005, , .	0.4	0
59	New Ferromagnetic Nitrides, CaN and SrN, and their "Recipe― Materials Research Society Symposia Proceedings, 2006, 987, 1.	0.1	0
60	Determination of the effective spin Hamiltonian of Mn6R6 referring to the spin density functional theory. Polyhedron, 2007, 26, 2117-2120.	2.2	0
61	A Microscopic Mechanism of Coulomb Driven Effective Negative Interaction for the High-Temperature Superconductivity. Journal of the Physical Society of Japan, 2008, 77, 109-112.	1.6	0
62	A quadratic form of the Coulomb operator and an optimization scheme for the extended Kohn–Sham models. Journal of Physics Condensed Matter, 2009, 21, 064212.	1.8	0
63	Formation of embedded edge states in graphene on a SrO(111) surface. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 573-576.	0.8	0
64	THE THIRD GENERATION OF THE DIRAC CONE AS A PROOF OF STACKED 2D ELECTRON SYSTEMS IN IRON PNICTIDES. Materials Research Society Symposia Proceedings, 2012, 1393, 1.	0.1	0
65	SIMULATION OF NANOSCALE ETCHING FOR NANOTUBE AND GRAPHENE DEVICES. Materials Research Society Symposia Proceedings, 2012, 1451, 21-24.	0.1	0
66	Ab-Initio Calculation Model for Nanocrystalline Diamond with Non-sp^3 Bonded Region and Its Effect on Elastic Properties. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1424-1429.	0.2	0