Anne Charrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492952/publications.pdf

Version: 2024-02-01

471371 377752 1,164 45 17 34 citations h-index g-index papers 46 46 46 1949 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Affinity driven ion exchange EG-OFET sensor for high selectivity and low limit of detection of cesium in seawater. Sensors and Actuators B: Chemical, 2022, 351, 130956.	4.0	7
2	Influence of force volume indentation parameters and processing method in wood cell walls nanomechanical studies. Scientific Reports, 2021, 11, 5739.	1.6	10
3	In situ plant materials hyperspectral imaging by multimodal scattering near-field optical microscopy. Communications Materials, 2021, 2, .	2.9	4
4	Dynamics of Individual Red Blood Cells Under Shear Flow: A Way to Discriminate Deformability Alterations. Frontiers in Physiology, 2021, 12, 775584.	1.3	9
5	Electrolyte-gated-organic field effect transistors functionalized by lipid monolayers with tunable pH sensitivity for sensor applications. Applied Physics Express, 2020, 13, 011005.	1.1	10
6	Femtomolar detection of Cu2+ ions in solution using super-Nernstian FET-sensor with a lipid monolayer as top-gate dielectric. Sensors and Actuators B: Chemical, 2020, 316, 128147.	4.0	17
7	Nanomechanics and Raman Spectroscopy of in Situ Native Carbohydrate Storage Granules for Enhancing Starch Quality and Lignocellulosic Biomass Production. ACS Omega, 2020, 5, 2594-2602.	1.6	4
8	Stable operation of water-gated organic field-effect transistor depending on channel flatness, electrode metals and surface treatment. Japanese Journal of Applied Physics, 2019, 58, SDDH02.	0.8	9
9	Self-organization of red blood cell suspensions under confined 2D flows. Soft Matter, 2019, 15, 2971-2980.	1.2	18
10	Novel and Innovative Interface as Potential Active Layer in Chem-FET Sensor Devices for the Specific Sensing of Cs ⁺ . ACS Applied Materials & Interfaces, 2019, 11, 47635-47641.	4.0	3
11	Facile Nanopatterning of PEDOT:PSS Thin Films. Advanced Materials Technologies, 2018, 3, 1700344.	3.0	14
12	Ultrathin Supported Lipid Monolayer with Unprecedented Mechanical and Dielectric Properties. Advanced Functional Materials, 2018, 28, 1801024.	7.8	9
13	Nanometrology of Biomass for Bioenergy: The Role of Atomic Force Microscopy and Spectroscopy in Plant Cell Characterization. Frontiers in Energy Research, 2018, 6, .	1.2	13
14	Towards Mechanical Clinical Markers in Sickle Cell Disease: Dynamics of Red Blood Cells in Low Shear Flow. Blood, 2018, 132, 4914-4914.	0.6	1
15	Tailoring the Electrochemical and Mechanical Properties of PEDOT:PSS Films for Bioelectronics. Macromolecular Materials and Engineering, 2017, 302, 1600497.	1.7	127
16	Printing Functional Protein Nanodots on Soft Elastomers: From Transfer Mechanism to Cell Mechanosensing. Nano Letters, 2017, 17, 4284-4290.	4.5	8
17	Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy. Scientific Reports, 2017, 7, 152.	1.6	29
18	Ligand Nano-cluster Arrays in a Supported Lipid Bilayer. Journal of Visualized Experiments, 2017, , .	0.2	3

#	Article	IF	Citations
19	High Aspect Ratio Subâ€Micrometer Channels Using Wet Etching: Application to the Dynamics of Red Blood Cell Transiting through Biomimetic Splenic Slits. Small, 2017, 13, 1700967.	5.2	35
20	Subpicomolar Iron Sensing Platform Based on Functional Lipid Monolayer Microarrays. Analytical Chemistry, 2016, 88, 3804-3809.	3.2	10
21	Size-Tunable Organic Nanodot Arrays: A Versatile Platform for Manipulating and Imaging Cells. Nano Letters, 2015, 15, 5178-5184.	4.5	17
22	Mechanical characterization of cross-linked serum albumin microcapsules. Soft Matter, 2014, 10, 4561.	1.2	50
23	A field effect transistor biosensor with a \hat{l}^3 -pyrone derivative engineered lipid-sensing layer for ultrasensitive Fe3+ ion detection with low pH interference. Biosensors and Bioelectronics, 2014, 54, 571-577.	5.3	19
24	Label free femtomolar electrical detection of Fe(<scp>iii</scp>) ions with a pyridinone modified lipid monolayer as the active sensing layer. Journal of Materials Chemistry B, 2013, 1, 443-446.	2.9	27
25	Nanometric Protein-Patch Arrays on Glass and Polydimethylsiloxane for Cell Adhesion Studies. Nano Letters, 2013, 13, 3372-3378.	4.5	18
26	Determination of mechanical properties of cortical bone using AFM under dry and immersed conditions. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 337-339.	0.9	10
27	Supported Lipid Monolayer with Improved Nanomechanical Stability: Effect of Polymerization. Journal of Physical Chemistry B, 2012, 116, 7190-7195.	1.2	10
28	Wetting Properties and Critical Micellar Concentration of Benzalkonium Chloride Mixed in Sodium Hypochlorite. Journal of Endodontics, 2012, 38, 1525-1529.	1.4	34
29	Autonomic Self-Healing Lipid Monolayer: A New Class of Ultrathin Dielectric. Langmuir, 2011, 27, 13643-13647.	1.6	22
30	From Understanding Cellular Function to Novel Drug Discovery: The Role of Planar Patch-Clamp Array Chip Technology. Frontiers in Pharmacology, 2011, 2, 51.	1.6	23
31	Cell placement and guidance on substrates for neurochip interfaces. Biotechnology and Bioengineering, 2010, 105, 368-373.	1.7	15
32	Direct Stabilization of a Phospholipid Monolayer on H-Terminated Silicon. Langmuir, 2010, 26, 2538-2543.	1.6	14
33	2D aggregation and selective desorption of nanoparticle probes: A new method to probe DNA mismatches and damages. Biosensors and Bioelectronics, 2007, 22, 1881-1886.	5.3	18
34	DNA Detection Method Based on the Two-Dimensional Aggregation and Selective Desorption of Nanoparticle Probes. Journal of Physical Chemistry B, 2006, 110, 12896-12900.	1.2	17
35	A new method to characterize chemically and topographically nanopatterned surfaces. Journal of Biotechnology, 2006, 126, 196-204.	1.9	3
36	Directed growth of horizontal silicon nanowires by laser induced decomposition of silane. Journal of Vacuum Science & Technology B, 2006, 24, 1248.	1.3	6

#	Article	IF	CITATIONS
37	Main Phase Transitions in Supported Lipid Single-Bilayer. Biophysical Journal, 2005, 89, 1094-1101.	0.2	120
38	Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. Journal of Applied Physics, 2002, 92, 2479-2484.	1.1	190
39	Correlated surface bands of the prototypical interface Sn/Si(1 1 1)-α Applied Surface Science, 2001, 175-176, 195-200.	3.1	O
40	Electron correlation effects at Sn/Si(111)–? and Sn/Ge(111)–? reconstructions. Progress in Surface Science, 2001, 67, 299-307.	3.8	19
41	Many-body effects in the electronic structure of Sn/Si(111)- \hat{l} ±-(3)1/2. Journal of Physics Condensed Matter, 2001, 13, L521-L528.	0.7	4
42	Photoemission from graphite: Intrinsic and self-energy effects. Physical Review B, 2001, 64, .	1.1	40
43	Contrasted electronic properties of Sn-adatom-based $(3\tilde{A}-3)R30\hat{A}^{\circ}$ reconstructions on Si(111). Physical Review B, 2001, 64, .	1.1	35
44	Solid-state graphitization mechanisms of silicon carbide 6H–SiC polar faces. Applied Surface Science, 2000, 162-163, 406-412.	3.1	112
45	Electronic structure of α and γ phases of Si(111)––Sn. Applied Surface Science, 2000, 162-163, 375-379.	3.1	1