Christian P Würth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relative and absolute determination of fluorescence quantum yields of transparent samples. Nature Protocols, 2013, 8, 1535-1550.	5.5	863
2	NaYF ₄ :Yb,Er/NaYF ₄ Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angewandte Chemie - International Edition, 2018, 57, 8765-8769.	7.2	298
3	Quenching of the upconversion luminescence of NaYF ₄ :Yb ³⁺ ,Er ³⁺ and NaYF ₄ :Yb ³⁺ ,Tm ³⁺ nanophosphors by water: the role of the sensitizer Yb ³⁺ in non-radiative relaxation. Nanoscale. 2015. 7. 11746-11757.	2.8	267
4	Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale, 2015, 7, 1403-1410.	2.8	210
5	Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles. Journal of the American Chemical Society, 2018, 140, 4922-4928.	6.6	185
6	Comparison of Methods and Achievable Uncertainties for the Relative and Absolute Measurement of Photoluminescence Quantum Yields. Analytical Chemistry, 2011, 83, 3431-3439.	3.2	169
7	Particle-Size-Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes. Analytical Chemistry, 2017, 89, 4868-4874.	3.2	161
8	Power-dependent upconversion quantum yield of NaYF ₄ :Yb ³⁺ ,Er ³⁺ nano- and micrometer-sized particles – measurements and simulations. Nanoscale, 2017, 9, 10051-10058.	2.8	132
9	Targeted Luminescent Near-Infrared Polymer-Nanoprobes for In Vivo Imaging of Tumor Hypoxia. Analytical Chemistry, 2011, 83, 9039-9046.	3.2	122
10	Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale, 2017, 9, 4283-4294.	2.8	117
11	Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods – Providing the basis for fluorescence quantum yield standards. Talanta, 2012, 90, 30-37.	2.9	107
12	Encapsulation of Hydrophobic Dyes in Polystyrene Micro- and Nanoparticles via Swelling Procedures. Journal of Fluorescence, 2011, 21, 937-944.	1.3	99
13	Scope and Limitations of Surface Functional Group Quantification Methods: Exploratory Study with Poly(acrylic acid)-Grafted Micro- and Nanoparticles. Journal of the American Chemical Society, 2012, 134, 8268-8276.	6.6	87
14	Integrating Sphere Setup for the Traceable Measurement of Absolute Photoluminescence Quantum Yields in the Near Infrared. Analytical Chemistry, 2012, 84, 1345-1352.	3.2	86
15	Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Research, 2018, 11, 6360-6374.	5.8	84
16	Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction. Review of Scientific Instruments, 2011, 82, 063108.	0.6	81
17	Yb,Nd,Er-doped upconversion nanoparticles: 980 nm <i>versus</i> 808 nm excitation. Nanoscale, 2019, 11, 13440-13449.	2.8	78
18	On the decay time of upconversion luminescence. Nanoscale, 2019, 11, 4959-4969.	2.8	76

CHRISTIAN P WüRTH

#	Article	IF	CITATIONS
19	Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd _{1⒒x} Hg _x Te and PbS quantum dots – method- and material-inherent challenges. Nanoscale, 2015, 7, 133-143.	2.8	74
20	New Life of Ancient Pigments: Application in High-Performance Optical Sensing Materials. Analytical Chemistry, 2013, 85, 9371-9377.	3.2	72
21	Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Analytical and Bioanalytical Chemistry, 2015, 407, 59-78.	1.9	70
22	Evaluation of a Commercial Integrating Sphere Setup for the Determination of Absolute Photoluminescence Quantum Yields of Dilute Dye Solutions. Applied Spectroscopy, 2010, 64, 733-741.	1.2	68
23	Simple strategies towards bright polymer particles via one-step staining procedures. Dyes and Pigments, 2012, 94, 247-257.	2.0	66
24	Absolute upconversion quantum yields of blue-emitting LiYF ₄ :Yb ³⁺ ,Tm ³⁺ upconverting nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 22556-22562.	1.3	66
25	Industrially scalable and cost-effective Mn ²⁺ doped Zn _x Cd _{1â^x} S/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy and Environmental Science, 2016, 9, 1083-1094.	15.6	63
26	Upconversion properties of SrF ₂ :Yb ³⁺ ,Er ³⁺ single crystals. Journal of Materials Chemistry C, 2020, 8, 4093-4101.	2.7	58
27	Shaping Luminescent Properties of Yb ³⁺ and Ho ³⁺ Coâ€Doped Upconverting Core–Shell βâ€NaYF ₄ Nanoparticles by Dopant Distribution and Spacing. Small, 2017, 13, 1701635.	5.2	57
28	Optically Detected Degradation of NaYF ₄ :Yb,Tm-Based Upconversion Nanoparticles in Phosphate Buffered Saline Solution. Langmuir, 2017, 33, 553-560.	1.6	55
29	Simple Self-Referenced Luminescent pH Sensors Based on Upconversion Nanocrystals and pH-Sensitive Fluorescent BODIPY Dyes. Analytical Chemistry, 2019, 91, 7756-7764.	3.2	55
30	Inherently Broadband Photoluminescence in Ag–In–S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies. Journal of Physical Chemistry C, 2019, 123, 2632-2641.	1.5	53
31	Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development. Biomaterials, 2013, 34, 160-170.	5.7	50
32	Mechanistic insights into seeded growth processes of gold nanoparticles. Nanoscale, 2010, 2, 2463.	2.8	49
33	Tuning the Surface of Nanoparticles: Impact of Poly(2â€ethylâ€2â€oxazoline) on Protein Adsorption in Serum and Cellular Uptake. Macromolecular Bioscience, 2016, 16, 1287-1300.	2.1	43
34	Excitation wavelength dependence of the photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with different aspect ratios. Physical Chemistry Chemical Physics, 2017, 19, 12509-12516.	1.3	42
35	A protected excitation-energy reservoir for efficient upconversion luminescence. Nanoscale, 2018, 10, 250-259.	2.8	41
36	Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of β-NaYF4:Yb3+,Er3+ nanoparticles: Measurements and simulations. Nano Research, 2019, 12, 1871-1879.	5.8	41

CHRISTIAN P WüRTH

#	Article	IF	CITATIONS
37	Evolution of Size and Optical Properties of Upconverting Nanoparticles during High-Temperature Synthesis. Journal of Physical Chemistry C, 2018, 122, 28958-28967.	1.5	33
38	Spectroscopic Characterization of Coumarin-Stained Beads: Quantification of the Number of Fluorophores Per Particle with Solid-State ¹⁹ F-NMR and Measurement of Absolute Fluorescence Quantum Yields. Analytical Chemistry, 2012, 84, 3654-3661.	3.2	32
39	Four- and Five-Component Syntheses and Photophysical Properties of Emission Solvatochromic 3-Aminovinylquinoxalines. Journal of Organic Chemistry, 2017, 82, 567-578.	1.7	32
40	Metasurface Enhanced Sensitized Photon Upconversion: Toward Highly Efficient Low Power Upconversion Applications and Nanoscale E-Field Sensors. Nano Letters, 2020, 20, 6682-6689.	4.5	26
41	LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals. Nano Research, 2021, 14, 797-806.	5.8	26
42	Efficient Luminescent Solar Concentrators Based on Environmentally Friendly Cdâ€Free Ternary AIS/ZnS Quantum Dots. Advanced Optical Materials, 2021, 9, 2100587.	3.6	24
43	Sensitization of upconverting nanoparticles with a NIR-emissive cyanine dye using a micellar encapsulation approach. Methods and Applications in Fluorescence, 2019, 7, 014003.	1.1	22
44	Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals. Methods and Applications in Fluorescence, 2019, 7, 024001.	1.1	20
45	Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. Nanoscale, 2020, 12, 12589-12601.	2.8	19
46	Synthesis and characterisation of highly fluorescent core–shell nanoparticles based on Alexa dyes. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	18
47	Determination of Photoluminescence Quantum Yields of Scattering Media with an Integrating Sphere: Direct and Indirect Illumination. Applied Spectroscopy, 2015, 69, 749-759.	1.2	18
48	Multiband emission from single β-NaYF4(Yb,Er) nanoparticles at high excitation power densities and comparison to ensemble studies. Nano Research, 2021, 14, 4107-4115.	5.8	18
49	Fluorescent magnetoliposomes as a platform technology for functional and molecular MR and optical imaging. Contrast Media and Molecular Imaging, 2012, 7, 59-67.	0.4	16
50	Beam-profile-compensated quantum yield measurements of upconverting nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 22016-22022.	1.3	16
51	Preparation of coreâ€"shell structured NaYF ₄ :Yb ³⁺ /Tm ³⁺ @NaYF ₄ :Yb ³⁺ /Er ³⁺ fluorescence temperature properties. CrystEngComm 2022, 24, 1752-1763	sup> 1.3	15
52	Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis. Nano Research, 2022, 15, 9639-9646.	5.8	14
53	Bioimaging: Shaping Luminescent Properties of Yb ³⁺ and Ho ³⁺ Coâ€Doped Upconverting Core–Shell βâ€NaYF ₄ Nanoparticles by Dopant Distribution and Spacing (Small) Tj	ETEQ2q11	0.71 8 4314 rg
54	Quantification of Anisotropy-Related Uncertainties in Relative Photoluminescence Quantum Yield Measurements of Nanomaterials – Semiconductor Quantum Dots and Rods. Zeitschrift Fur Physikalische Chemie, 2015, 229, 153-165.	1.4	12

CHRISTIAN P WüRTH

#	Article	IF	CITATIONS
55	Polymer-and Glass-based Fluorescence Standards for the Near Infrared (NIR) Spectral Region. Journal of Fluorescence, 2011, 21, 953-961.	1.3	11
56	Synthesis of NIRâ€Emitting InAsâ€Based Core/Shell Quantum Dots with the Use of Tripyrazolylarsane as Arsenic Precursor. Particle and Particle Systems Characterization, 2018, 35, 1800175.	1.2	11
57	Aufwäskonvertierende NaYF ₄ :Yb,Er/NaYF ₄ â€Kern/Schaleâ€Nanokristalle mit hoher Lumineszenzquantenausbeute. Angewandte Chemie, 2018, 130, 8901-8905.	1.6	10
58	Fluorescence Quantum Yield and Single-Particle Emission of CdSe Dot/CdS Rod Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 24338-24346.	1.5	10
59	Efficient sub-15 nm cubic-phase core/shell upconversion nanoparticles as reporters for ensemble and single particle studies. Nanoscale, 2020, 12, 10592-10599.	2.8	10
60	Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging. Chemical Communications, 2022, 58, 2967-2970.	2.2	10
61	Core–Shell NaYF ₄ :Yb ³⁺ /Tm ³⁺ @NaGdF ₄ :Ce ³⁺ /Eu ^{3+ Nanoparticles for Upconversion and Downconversion Dual-Mode Fluorescence-Based Temperature Sensing, ACS Applied Nano Materials, 2022, 5, 9266-9276.}	 2.4	10
62	Metasurfaceâ€Enhanced Photon Upconversion upon 1550Ânm Excitation. Advanced Optical Materials, 2021, 9, 2101285.	3.6	7
63	Effect of Ca ²⁺ doping on the upconversion luminescence properties of NaYF ₄ :Yb ³⁺ /Tm ³⁺ nanoparticles and study of its temperature measurement performance. CrystEngComm, 2022, 24, 4887-4898.	1.3	5
64	Fluorophore‣abeled Siloxaneâ€Based Nanoparticles for Biomedical Applications. Macromolecular Symposia, 2011, 309-310, 141-146.	0.4	3
65	Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals. Nano Research, 2022, 15, 2362-2373.	5.8	3
66	The toolbox of fluorescence standards: flexible calibration tools for the standardization of fluorescence-based measurements. Proceedings of SPIE, 2010, , .	0.8	2
67	Fast and Reliable Measurement of Photoluminescence Quantum Yields forÂthe Development of Fluorescent Probes. Biophysical Journal, 2013, 104, 345a.	0.2	0
68	Enhanced Photon Upconversion Using Erbium-Doped Nanoparticles Interacting with Silicon Metasurfaces. , 2021, , .		0
69	Lumineszenzmessungen â€â€6tandards und die Vergleichbarkeit der Ergebnisse. Nachrichten Aus Der Chemie, 2021, 69, 45-48.	0.0	0