Rachel Burga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase I Hepatic Immunotherapy for Metastases Study of Intra-Arterial Chimeric Antigen Receptor–Modified T-cell Therapy for CEA+ Liver Metastases. Clinical Cancer Research, 2015, 21, 3149-3159.	7.0	324
2	Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunology, Immunotherapy, 2015, 64, 817-829.	4.2	184
3	A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials, 2012, 33, 5247-5258.	11.4	135
4	Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 771-781.	3.3	122
5	Cord blood natural killer cells expressing a dominant negative TGF-β receptor: Implications for adoptive immunotherapy for glioblastoma. Cytotherapy, 2017, 19, 408-418.	0.7	97
6	Engineering the TGFβ Receptor to Enhance the Therapeutic Potential of Natural Killer Cells as an Immunotherapy for Neuroblastoma. Clinical Cancer Research, 2019, 25, 4400-4412.	7.0	52
7	Beyond CAR T Cells: Other Cell-Based Immunotherapeutic Strategies Against Cancer. Frontiers in Oncology, 2019, 9, 196.	2.8	44
8	Activation of 4-1BBL+ B cells with CD40 agonism and IFNÎ ³ elicits potent immunity against glioblastoma. Journal of Experimental Medicine, 2021, 218, .	8.5	42
9	Neutrophil:lymphocyte ratios and serum cytokine changes after hepatic artery chimeric antigen receptor-modified T-cell infusions for liver metastases. Cancer Gene Therapy, 2014, 21, 457-462.	4.6	35
10	Biliary obstruction results in PD-1-dependent liver T cell dysfunction and acute inflammation mediated by Th17 cells and neutrophils. Journal of Leukocyte Biology, 2013, 94, 813-823.	3.3	33
11	Composite iron oxide–Prussian blue nanoparticles for magnetically guided T ₁ -weighted magnetic resonance imaging and photothermal therapy of tumors. International Journal of Nanomedicine, 2017, Volume 12, 6413-6424.	6.7	28
12	Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells. Cytotherapy, 2016, 18, 1410-1421.	0.7	26
13	Designing Magnetically Responsive Biohybrids Composed of Cord Blood-Derived Natural Killer Cells and Iron Oxide Nanoparticles. Bioconjugate Chemistry, 2019, 30, 552-560.	3.6	24
14	PLGA nanodepots co-encapsulating prostratin and anti-CD25 enhance primary natural killer cell antiviral and antitumor function. Nano Research, 2020, 13, 736-744.	10.4	17
15	Liver metastases induce reversible hepatic B cell dysfunction mediated by Gr-1+CD11b+ myeloid cells. Journal of Leukocyte Biology, 2014, 96, 883-894.	3.3	14