Alena PecinovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492779/publications.pdf

Version: 2024-02-01

186265 315739 1,945 38 28 38 citations h-index g-index papers 41 41 41 3425 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Genetic Complementation of ATP Synthase Deficiency Due to Dysfunction of TMEM70 Assembly Factor in Rat. Biomedicines, 2022, 10, 276.	3.2	2
2	Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy, 2022, 18, 2409-2426.	9.1	13
3	POLRMT mutations impair mitochondrial transcription causing neurological disease. Nature Communications, 2021, 12, 1135.	12.8	21
4	Biochemical thresholds for pathological presentation of ATP synthase deficiencies. Biochemical and Biophysical Research Communications, 2020, 521, 1036-1041.	2.1	12
5	Role of Mitochondrial Glycerol-3-Phosphate Dehydrogenase in Metabolic Adaptations of Prostate Cancer. Cells, 2020, 9, 1764.	4.1	18
6	Cytochrome c Oxidase Subunit 4 Isoform Exchange Results in Modulation of Oxygen Affinity. Cells, 2020, 9, 443.	4.1	48
7	Mitochondrial targets of metforminâ€"Are they physiologically relevant?. BioFactors, 2019, 45, 703-711.	5.4	23
8	Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	4.0	17
9	Mitochondrial Targeting of Metformin Enhances Its Activity against Pancreatic Cancer. Molecular Cancer Therapeutics, 2016, 15, 2875-2886.	4.1	65
10	Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia, 2016, 30, 209-218.	7.2	31
11	Noninvasive diagnostics of mitochondrial disorders in isolated lymphocytes with high resolution respirometry. BBA Clinical, 2014, 2, 62-71.	4.1	19
12	ROS production in brown adipose tissue mitochondria: The question of UCP1-dependence. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 2017-2030.	1.0	51
13	Cytochrome <i>c</i> oxidase subunit 4 isoform 2â€knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. FASEB Journal, 2012, 26, 3916-3930.	0.5	62
14	Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion, 2012, 12, 294-304.	3.4	37
15	Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion, 2011, 11, 722-728.	3.4	61
16	Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935.	5.4	48
17	Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 \hat{A} subunit. Human Molecular Genetics, 2010, 19, 3430-3439.	2.9	133
18	Phosphomimetic Substitution of Cytochrome <i>c</i> Tyrosine 48 Decreases Respiration and Binding to Cardiolipin and Abolishes Ability to Trigger Downstream Caspase Activation. Biochemistry, 2010, 49, 6705-6714.	2.5	77

#	Article	IF	CITATIONS
19	A suggested role for mitochondria in Noonan syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 275-283.	3.8	47
20	Chapter 11 Isolation of Regulatoryâ€Competent, Phosphorylated Cytochrome c Oxidase. Methods in Enzymology, 2009, 457, 193-210.	1.0	41
21	Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy. Journal of Neuroscience Research, 2009, 87, 2748-2756.	2.9	87
22	High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Archives of Biochemistry and Biophysics, 2009, 481, 30-36.	3.0	71
23	Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. Journal of Bioenergetics and Biomembranes, 2008, 40, 445-456.	2.3	204
24	HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis, 2008, 29, 1528-1537.	2.8	84
25	Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Research, 2007, 17, 1319-1326.	5.5	78
26	Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Experimental Neurology, 2007, 204, 597-609.	4.1	48
27	Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 989-997.	1.0	35
28	Mitochondrial diseases and genetic defects of ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1400-1405.	1.0	116
29	Inhibition of cytochrome c oxidase subunit 4 precursor processing by the hypoxia mimic cobalt chloride. Biochemical and Biophysical Research Communications, 2006, 344, 1086-1093.	2.1	33
30	Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode. Analytical Biochemistry, 2006, 353, 37-42.	2.4	44
31	Two components in pathogenic mechanism of mitochondrial ATPase deficiency: Energy deprivation and ROS production. Experimental Gerontology, 2006, 41, 683-687.	2.8	34
32	Flow-cytometric monitoring of mitochondrial depolarisation: from fluorescence intensities to millivolts. Journal of Photochemistry and Photobiology B: Biology, 2005, 78, 99-108.	3.8	28
33	Mitochondrial Membrane Potential and ATP Production in Primary Disorders of ATP Synthase. Toxicology Mechanisms and Methods, 2004, 14, 7-11.	2.7	16
34	A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Carcinogenesis, 2004, 26, 531-539.	2.8	73
35	Mitochondrial diseases and ATPase defects of nuclear origin. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1658, 115-121.	1.0	35
36	GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochemical and Biophysical Research Communications, 2004, 313, 687-693.	2.1	29

Alena PecinovÃi

#		Article	IF	CITATIONS
37	7	Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochemical Journal, 2004, 383, 561-571.	3.7	59
38	8	Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1639, 53-63.	3.8	45