Alena PecinovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492779/publications.pdf Version: 2024-02-01

ALENA PECINOVÃ:

#	Article	IF	CITATIONS
1	Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. Journal of Bioenergetics and Biomembranes, 2008, 40, 445-456.	2.3	204
2	Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 Â subunit. Human Molecular Genetics, 2010, 19, 3430-3439.	2.9	133
3	Mitochondrial diseases and genetic defects of ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1400-1405.	1.0	116
4	Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy. Journal of Neuroscience Research, 2009, 87, 2748-2756.	2.9	87
5	HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis, 2008, 29, 1528-1537.	2.8	84
6	Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Research, 2007, 17, 1319-1326.	5.5	78
7	Phosphomimetic Substitution of Cytochrome <i>c</i> Tyrosine 48 Decreases Respiration and Binding to Cardiolipin and Abolishes Ability to Trigger Downstream Caspase Activation. Biochemistry, 2010, 49, 6705-6714.	2.5	77
8	A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Carcinogenesis, 2004, 26, 531-539.	2.8	73
9	High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Archives of Biochemistry and Biophysics, 2009, 481, 30-36.	3.0	71
10	Mitochondrial Targeting of Metformin Enhances Its Activity against Pancreatic Cancer. Molecular Cancer Therapeutics, 2016, 15, 2875-2886.	4.1	65
11	Cytochrome <i>c</i> oxidase subunit 4 isoform 2â€knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. FASEB Journal, 2012, 26, 3916-3930.	0.5	62
12	Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion, 2011, 11, 722-728.	3.4	61
13	Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochemical Journal, 2004, 383, 561-571.	3.7	59
14	ROS production in brown adipose tissue mitochondria: The question of UCP1-dependence. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 2017-2030.	1.0	51
15	Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Experimental Neurology, 2007, 204, 597-609.	4.1	48
16	Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935.	5.4	48
17	Cytochrome c Oxidase Subunit 4 Isoform Exchange Results in Modulation of Oxygen Affinity. Cells, 2020, 9, 443.	4.1	48
18	A suggested role for mitochondria in Noonan syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 275-283.	3.8	47

Alena PecinovÃi

#	Article	IF	CITATIONS
19	Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1639, 53-63.	3.8	45
20	Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode. Analytical Biochemistry, 2006, 353, 37-42.	2.4	44
21	Chapter 11 Isolation of Regulatoryâ€Competent, Phosphorylated Cytochrome c Oxidase. Methods in Enzymology, 2009, 457, 193-210.	1.0	41
22	Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion, 2012, 12, 294-304.	3.4	37
23	Mitochondrial diseases and ATPase defects of nuclear origin. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1658, 115-121.	1.0	35
24	Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 989-997.	1.0	35
25	Two components in pathogenic mechanism of mitochondrial ATPase deficiency: Energy deprivation and ROS production. Experimental Gerontology, 2006, 41, 683-687.	2.8	34
26	Inhibition of cytochrome c oxidase subunit 4 precursor processing by the hypoxia mimic cobalt chloride. Biochemical and Biophysical Research Communications, 2006, 344, 1086-1093.	2.1	33
27	Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia, 2016, 30, 209-218.	7.2	31
28	GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene. Biochemical and Biophysical Research Communications, 2004, 313, 687-693.	2.1	29
29	Flow-cytometric monitoring of mitochondrial depolarisation: from fluorescence intensities to millivolts. Journal of Photochemistry and Photobiology B: Biology, 2005, 78, 99-108.	3.8	28
30	Mitochondrial targets of metformin—Are they physiologically relevant?. BioFactors, 2019, 45, 703-711.	5.4	23
31	POLRMT mutations impair mitochondrial transcription causing neurological disease. Nature Communications, 2021, 12, 1135.	12.8	21
32	Noninvasive diagnostics of mitochondrial disorders in isolated lymphocytes with high resolution respirometry. BBA Clinical, 2014, 2, 62-71.	4.1	19
33	Role of Mitochondrial Glycerol-3-Phosphate Dehydrogenase in Metabolic Adaptations of Prostate Cancer. Cells, 2020, 9, 1764.	4.1	18
34	Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	4.0	17
35	Mitochondrial Membrane Potential and ATP Production in Primary Disorders of ATP Synthase. Toxicology Mechanisms and Methods, 2004, 14, 7-11.	2.7	16
36	Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy, 2022, 18, 2409-2426.	9.1	13

#	Article	IF	CITATIONS
37	Biochemical thresholds for pathological presentation of ATP synthase deficiencies. Biochemical and Biophysical Research Communications, 2020, 521, 1036-1041.	2.1	12
38	Genetic Complementation of ATP Synthase Deficiency Due to Dysfunction of TMEM70 Assembly Factor in Rat. Biomedicines, 2022, 10, 276.	3.2	2