Anastasia H Soeriyadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492678/publications.pdf

Version: 2024-02-01

1040056 839539 33 353 9 18 citations g-index h-index papers 33 33 33 622 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy and Environmental Science, 2018, 11, 2432-2443.	30.8	172
2	Investigation of light-induced degradation in N-Type silicon heterojunction solar cells during illuminated annealing at elevated temperatures. Solar Energy Materials and Solar Cells, 2020, 218, 110752.	6.2	19
3	Progress with Defect Engineering in Silicon Heterojunction Solar Cells. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100170.	2.4	16
4	Evidence for a Lightâ€Induced Degradation Mechanism at Elevated Temperatures in Commercial Nâ€Type Silicon Heterojunction Solar Cells. Solar Rrl, 2020, 4, 2000214.	5.8	15
5	Material and Device Improvement of GaAsP Top Solar Cells for GaAsP/SiGe Tandem Solar Cells Grown on Si Substrates. IEEE Journal of Photovoltaics, 2015, 5, 1800-1804.	2.5	14
6	23.4% monolithic epitaxial GaAsP/Si tandem solar cells and quantification of losses from threading dislocations. Solar Energy Materials and Solar Cells, 2021, 230, 111299.	6.2	14
7	Largeâ€Area Boronâ€Doped 1.6 Ω cm pâ€Type Czochralski Silicon Heterojunction Solar Cells with a Sta Openâ€Circuit Voltage of 736 mV and Efficiency of 22.0%. Solar Rrl, 2020, 4, 2000134.	ble 5.8	13
8	Firing stability of tube furnaceâ€annealed nâ€type polyâ€Si on oxide junctions. Progress in Photovoltaics: Research and Applications, 2022, 30, 49-64.	8.1	12
9	Stability Study of Silicon Heterojunction Solar Cells Fabricated with Gallium―and Boronâ€Doped Silicon Wafers. Solar Rrl, 2021, 5, 2100406.	5.8	10
10	High-Intensity Illuminated Annealing of Industrial SHJ Solar Cells: A Pilot Study. IEEE Journal of Photovoltaics, 2022, 12, 267-273.	2.5	10
11	Pâ€type Upgraded Metallurgicalâ€Grade Multicrystalline Silicon Heterojunction Solar Cells with Openâ€Circuit Voltages over 690 mV. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900319.	1.8	9
12	Performance improvement for epitaxially grown SiGe on Si solar cell using a compositionally graded SiGe base. Applied Physics Letters, 2016, 109, 243503.	3.3	6
13	Current and efficiency improvement for a GaAsP/SiGe on Si tandem solar cell device achieved by light trapping techniques. Physica Status Solidi - Rapid Research Letters, 2016, 10, 596-599.	2.4	6
14	Avoiding Shading Losses in Concentrator Photovoltaics Using a Soft-Imprinted Cloaking Geometry. IEEE Journal of Photovoltaics, 2022, 12, 1116-1127.	2.5	5
15	Loss analysis for single junction concentrator solar cells. AIP Conference Proceedings, 2018, , .	0.4	4
16	Impact of surface doping profile and passivation layers on surface-related degradation in silicon PERC solar cells. Solar Energy Materials and Solar Cells, 2022, 235, 111497.	6.2	4
17	Aluminum Induced Crystallization of <italic>In-Situ</italic> Phosphorus Doped E-Beam Evaporated Silicon Films for High Gauge Factor Piezo-Resistors. IEEE Electron Device Letters, 2018, 39, 889-892.	3.9	3
18	Evaluating the Impact of and Solutions to Light-induced Degradation in Silicon Heterojunction Solar Cells. , $2019, \dots$		3

#	Article	IF	CITATIONS
19	Silicon Nanotexture Surface Area Mapping Using Ultraviolet Reflectance. IEEE Journal of Photovoltaics, 2021, 11, 1291-1298.	2.5	3
20	Investigating the degradation behaviours of n+-doped Poly-Si passivation layers: An outlook on long-term stability and accelerated recovery. Solar Energy Materials and Solar Cells, 2021, , 111491.	6.2	3
21	Short ciruit current improvement of SiGe solar cell in a gallium arsenide phosphide - silicon germanium dual junction solar cell on Si substrate. , 2015, , .		2
22	Performance improvement for epitaxially grown SiGe on Si solar cell by optimizing the back surface field. Physica Status Solidi - Rapid Research Letters, 2016, 10, 735-738.	2.4	2
23	Spectral response of steady-state photoluminescence from GaAs1-xPx layers grown on a SiGe/Si system. Applied Physics Letters, 2017, 111, .	3.3	2
24	Improved Laser-Induced Defect Passivation and Simultaneous Elimination of Light-Induced Degradation in p-Type Czochralski Silicon. IEEE Journal of Photovoltaics, 2021, 11, 1370-1379.	2.5	2
25	GaAsP Hall mobility characterization for GaAsP/SiGe tandem solar cell on Si substrate. , 2014, , .		1
26	Optical and electrical analysis of graded buffer layers in IIIâ \in "V/SiGe on silicon tandem solar cells. , 2015, , .		1
27	Spatially resolved EL and PL coupling of a dual junction solar cell. , 2016, , .		1
28	Formation Mechanism of Cu-based Ohmic Contacts for GaAs Solar Cells. , 2020, , .		1
29	Increased Spectrum Utilization with GaAsP/SiGe Solar Cells Grown on Silicon Substrates. MRS Advances, 2016, 1, 2901-2906.	0.9	0
30	Improved GaAsP/SiGe tandem on silicon outdoors and under concentration., 2016,,.		0
31	Elevating Low-Quality Silicon Wafers For High-Efficiency Silicon Heterojunction Solar Cell Applications. , 2019, , .		O
32	Can hydrogenation mitigate Cu-induced bulk degradation in silicon?. , 2020, , .		0
33	Diffusion profiles beneath silicon heterojunction contacts reduce contact resistivity and increase efficiency., 2020,,.		O