Alexandra Mazharian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TLT-1 Regulates Thrombus Growth Under Non-Inflammatory Conditions. Blood, 2021, 138, 1050-1050.	1.4	Ο
2	Interplay between the tyrosine kinases Chk and Csk and phosphatase PTPRJ is critical for regulating platelets in mice. Blood, 2020, 135, 1574-1587.	1.4	19
3	Severity of Megakaryocyte-Driven Osteosclerosis in Mpig6b-Deficient Mice Is Sex-Linked. Journal of Bone and Mineral Research, 2020, 36, 803-813.	2.8	9
4	Catalytic dysregulation of SHP2 leading to Noonan syndromes affects platelet signaling and functions. Blood, 2019, 134, 2304-2317.	1.4	23
5	LAIR-1 Limits Neutrophilic Airway Inflammation. Frontiers in Immunology, 2019, 10, 842.	4.8	32
6	The Gp1ba-Cre transgenic mouse: a new model to delineate platelet and leukocyte functions. Blood, 2019, 133, 331-343.	1.4	35
7	Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B. ELife, 2019, 8, .	6.0	33
8	A novel method for automated assessment of megakaryocyte differentiation and proplatelet formation. Platelets, 2018, 29, 357-364.	2.3	10
9	Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148. Blood, 2018, 131, 1122-1144.	1.4	35
10	Collagen type I degradation fragments act through the collagen receptor LAIR-1 to provide a negative feedback for osteoclast formation. Bone, 2018, 117, 23-30.	2.9	20
11	TREM-like transcript 1: a more sensitive marker of platelet activation than P-selectin in humans and mice. Blood Advances, 2018, 2, 2072-2078.	5.2	35
12	Uncoupling ITIM receptor G6b-B from tyrosine phosphatases Shp1 and Shp2 disrupts murine platelet homeostasis. Blood, 2018, 132, 1413-1425.	1.4	25
13	Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice. Blood, 2018, 132, 1399-1412.	1.4	37
14	Mice Lacking the Inhibitory Collagen Receptor LAIR-1 Exhibit a Mild Thrombocytosis and Hyperactive Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 823-835.	2.4	28
15	Signalling Pathways Regulating Platelet Biogenesis. , 2016, , 153-173.		0
16	Accessible Synthetic Probes for Staining Actin inside Platelets and Megakaryocytes by Employing Lifeact Peptide. ChemBioChem, 2015, 16, 1680-1688.	2.6	7
17	Proplatelets slip slidin' away. Blood, 2015, 125, 747-748.	1.4	1
18	Cross talk between serine/threonine and tyrosine kinases regulates ADP-induced thromboxane generation in platelets. Thrombosis and Haemostasis, 2015, 114, 558-568.	3.4	7

Alexandra Mazharian

#	Article	IF	CITATIONS
19	Src family kinases: at the forefront of platelet activation. Blood, 2014, 124, 2013-2024.	1.4	229
20	Megakaryocyte-specific deletion of the protein-tyrosine phosphatases Shp1 and Shp2 causes abnormal megakaryocyte development, platelet production, and function. Blood, 2013, 121, 4205-4220.	1.4	74
21	Sphingosine kinase 2 (Sphk2) regulates platelet biogenesis by providing intracellular sphingosine 1-phosphate (S1P). Blood, 2013, 122, 791-802.	1.4	49
22	JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood, 2013, 122, 3787-3797.	1.4	114
23	Mice Lacking the ITIM-Containing Receptor G6b-B Exhibit Macrothrombocytopenia and Aberrant Platelet Function. Science Signaling, 2012, 5, ra78.	3.6	65
24	Assessment of Megakaryocyte Migration and Chemotaxis. Methods in Molecular Biology, 2012, 788, 275-288.	0.9	15
25	Dasatinib enhances megakaryocyte differentiation but inhibits platelet formation. Blood, 2011, 117, 5198-5206.	1.4	84
26	Critical role of Src-Syk-PLCÎ ³ 2 signaling in megakaryocyte migration and thrombopoiesis. Blood, 2010, 116, 793-800.	1.4	49
27	The mitogenâ€activated protein kinase signaling pathways: role in megakaryocyte differentiation. Journal of Thrombosis and Haemostasis, 2010, 8, 17-26.	3.8	63
28	Critical role for ERK1/2 in bone marrow and fetal liver–derived primary megakaryocyte differentiation, motility, and proplatelet formation. Experimental Hematology, 2009, 37, 1238-1249.e5.	0.4	85
29	The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood, 2009, 113, 4942-4954.	1.4	115
30	Involvement of the Mitogen-activated Protein Kinase c-Jun NH2-terminal Kinase 1 in Thrombus Formation. Journal of Biological Chemistry, 2007, 282, 31990-31999.	3.4	39
31	Protease-activating Receptor-4 Induces Full Platelet Spreading on a Fibrinogen Matrix. Journal of Biological Chemistry, 2007, 282, 5478-5487.	3.4	57
32	Differential Involvement of ERK2 and p38 in Platelet Adhesion to Collagen. Journal of Biological Chemistry, 2005, 280, 26002-26010.	3.4	47
33	Cyclin D3 Is a Cofactor of Retinoic Acid Receptors, Modulating Their Activity in the Presence of Cellular Retinoic Acid-binding Protein II. Journal of Biological Chemistry, 2003, 278 <u>, 6355-6362</u> .	3.4	34