
Klaus Langer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spacer length and serum protein adsorption affect active targeting of trastuzumab-modified nanoparticles. Biomaterials and Biosystems, 2022, 5, 100032.	1.0	3
2	Effects of Generic Exchange of Levodopa Medication in Patients With Parkinson Disease. Journal of Patient Safety, 2022, Publish Ahead of Print, .	0.7	2
3	Tuning the protein corona of PLGA nanoparticles: Characterization of trastuzumab adsorption behavior and its cellular interaction with breast cancer cell lines. Journal of Drug Delivery Science and Technology, 2022, 74, 103543.	1.4	3
4	Lecithin coating as universal stabilization and functionalization strategy for nanosized drug carriers to overcome the blood–brain barrier. International Journal of Pharmaceutics, 2021, 593, 120146.	2.6	7
5	Backbone <i>vs.</i> side-chain: two light-degradable polyurethanes based on 6-nitropiperonal. Polymer Chemistry, 2021, 12, 4565-4575.	1.9	3
6	Light-responsive polymeric nanoparticles based on a novel nitropiperonal based polyester as drug delivery systems for photosensitizers in PDT. International Journal of Pharmaceutics, 2021, 597, 120326.	2.6	19
7	Development of a Lyophilization Process for Long-Term Storage of Albumin-Based Perfluorodecalin-Filled Artificial Oxygen Carriers. Pharmaceutics, 2021, 13, 584.	2.0	5
8	Identification of main influencing factors on the protein corona composition of PLGA and PLA nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 212-222.	2.0	13
9	Backbone-Degradable (Co-)Polymers for Light-Triggered Drug Delivery. ACS Applied Polymer Materials, 2021, 3, 3831-3842.	2.0	9
10	Nanoparticle albumin-bound mTHPC for photodynamic therapy: Preparation and comprehensive characterization of a promising drug delivery system. International Journal of Pharmaceutics, 2020, 582, 119347.	2.6	15
11	Reversion of arterial calcification by elastin-targeted DTPA-HSA nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 150, 108-119.	2.0	8
12	Effects of generic exchange of solid oral dosage forms in neurological disorders: a systematic review. International Journal of Clinical Pharmacy, 2020, 42, 393-417.	1.0	3
13	Lipoprotein imitating nanoparticles: Lecithin coating binds ApoE and mediates non-lysosomal uptake leading to transcytosis over the blood-brain barrier. International Journal of Pharmaceutics, 2020, 589, 119821.	2.6	8
14	Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. Beilstein Journal of Nanotechnology, 2019, 10, 2062-2072.	1.5	20
15	Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein Journal of Nanotechnology, 2019, 10, 1707-1715.	1.5	48
16	Preparation of Lightâ€Responsive Aliphatic Polycarbonate via Versatile Polycondensation for Controlled Degradation. Macromolecular Chemistry and Physics, 2019, 220, 1800539.	1.1	17
17	Light-Responsive Serinol-Based Polycarbonate and Polyester as Degradable Scaffolds. ACS Applied Bio Materials, 2019, 2, 3038-3051.	2.3	23
18	Preparation of Sesquiterpene Lactone-Loaded PLA Nanoparticles and Evaluation of Their Antitrypanosomal Activity. Molecules, 2019, 24, 2110.	1.7	9

#	Article	IF	CITATIONS
19	Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1002-1015.	1.5	79
20	Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 70-80.	2.0	99
21	In vitro evaluation of innovative light-responsive nanoparticles for controlled drug release in intestinal PDT. International Journal of Pharmaceutics, 2019, 565, 199-208.	2.6	13
22	The impact of gastrointestinal mucus on nanoparticle penetration – in vitro evaluation of mucus-penetrating nanoparticles for photodynamic therapy. European Journal of Pharmaceutical Sciences, 2019, 133, 28-39.	1.9	25
23	Conversion of PLGA nanoparticle suspensions into solid dosage forms via fluid bed granulation and tableting. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 77-87.	2.0	6
24	Light-responsive nanoparticles based on new polycarbonate polymers as innovative drug delivery systems for photosensitizers in PDT. International Journal of Pharmaceutics, 2019, 557, 182-191.	2.6	42
25	A new preparation strategy for surface modified PLA nanoparticles to enhance uptake by endothelial cells. International Journal of Pharmaceutics, 2018, 536, 211-221.	2.6	19
26	Thermophoretic immunoassay based on autodisplayed Z-domains for the diagnosis of C-reactive protein. Sensors and Actuators B: Chemical, 2018, 258, 1131-1137.	4.0	6
27	Didodecyldimethylammonium bromide (DMAB) stabilized poly(lactic- co -glycolic acid) (PLGA) nanoparticles: Uptake and cytotoxic potential in Caco-2Âcells. Journal of Drug Delivery Science and Technology, 2018, 43, 430-438.	1.4	5
28	Use of Light-Degradable Aliphatic Polycarbonate Nanoparticles As Drug Carrier for Photosensitizer. Biomacromolecules, 2018, 19, 4677-4690.	2.6	42
29	Mucus-penetrating nanoparticles: Promising drug delivery systems for the photodynamic therapy of intestinal cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 129, 1-9.	2.0	25
30	Rhombic organization of microvilli domains found in a cell model of the human intestine. PLoS ONE, 2018, 13, e0189970.	1.1	3
31	Modifying plasmid-loaded HSA-nanoparticles with cell penetrating peptides – Cellular uptake and enhanced gene delivery. International Journal of Pharmaceutics, 2017, 522, 198-209.	2.6	14
32	Polymeric nanoparticles – Influence of the glass transition temperature on drug release. International Journal of Pharmaceutics, 2017, 517, 338-347.	2.6	47
33	EB1 modified HSA nanoparticles as non-viral delivery vectors-Influence of peptide concentration on cell uptake. Materials Today: Proceedings, 2017, 4, S174-S179.	0.9	0
34	Characterisation and cellular uptake of polysorbate 80-coated PLA nanoparticles. Materials Today: Proceedings, 2017, 4, S193-S199.	0.9	2
35	Doxorubicin-loaded PLGA nanoparticles - a systematic evaluation of preparation techniques and parametersâ^—. Materials Today: Proceedings, 2017, 4, S188-S192.	0.9	33
36	Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid) matrix nanoparticles on human monocytes. International Journal of Nanomedicine, 2016, Volume 11, 5221-5236.	3.3	23

#	Article	IF	CITATIONS
37	Crystal Engineering of Pharmaceutical Co-crystals: "NMR Crystallography―of Niclosamide Co-crystals. Crystal Growth and Design, 2016, 16, 3087-3100.	1.4	39
38	Quantitative bioimaging of platinum group elements in tumor spheroids. Analytica Chimica Acta, 2016, 938, 106-113.	2.6	32
39	Asymmetrical flow field-flow fractionation for the analysis of PEG-asparaginase. Talanta, 2016, 146, 335-339.	2.9	5
40	Detection and analysis of human serum albumin nanoparticles within phagocytic cells at the resolution of individual live cell or single 3D multicellular spheroid. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	0
41	Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen. Scientific Reports, 2015, 5, 8202.	1.6	68
42	pH-Triggered release from surface-modified poly(lactic- <i>co</i> -glycolic acid) nanoparticles. Beilstein Journal of Nanotechnology, 2015, 6, 2504-2512.	1.5	13
43	Nanoparticulate carriers for photodynamic therapy of cholangiocarcinoma: In vitro comparison of various polymer-based nanoparticles. International Journal of Pharmaceutics, 2015, 496, 942-952.	2.6	13
44	Ligand-Modified Human Serum Albumin Nanoparticles for Enhanced Gene Delivery. Molecular Pharmaceutics, 2015, 12, 3202-3213.	2.3	60
45	Characterisation of PEGylated PLGA nanoparticles comparing the nanoparticle bulk to the particle surface using UV/vis spectroscopy, SEC, 1H NMR spectroscopy, and X-ray photoelectron spectroscopy. Applied Surface Science, 2015, 347, 378-385.	3.1	35
46	PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent. Nanotechnology, 2015, 26, 145103.	1.3	25
47	Comparative examination of adsorption of serum proteins on HSA- and PLGA-based nanoparticles using SDS–PAGE and LC–MS. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 80-87.	2.0	56
48	Covalent Modification of Human Serum Albumin by the Natural Sesquiterpene Lactone Parthenolide. Molecules, 2015, 20, 6211-6223.	1.7	12
49	Reaction of human macrophages on protein corona covered TiO2 nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 275-282.	1.7	34
50	New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles. PLoS ONE, 2015, 10, e0127532.	1.1	42
51	Tracking of Magnetite Labeled Nanoparticles in the Rat Brain Using MRI. PLoS ONE, 2014, 9, e92068.	1.1	7
52	Asymmetrical flow field-flow fractionation for human serum albumin based nanoparticle characterisation and a deeper insight into particle formation processes. Journal of Chromatography A, 2014, 1346, 97-106.	1.8	9
53	A palladium label to monitor nanoparticle-assisted drug delivery of a photosensitizer into tumor spheroids by elemental bioimaging. Metallomics, 2014, 6, 77-81.	1.0	25
54	Asymmetric flow field-flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing. International Journal of Pharmaceutics, 2014, 461, 137-144.	2.6	19

#	Article	IF	CITATIONS
55	Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model. Alzheimer's Research and Therapy, 2013, 5, 51.	3.0	45
56	Albumin nanoparticles with predictable size by desolvation procedure. Journal of Microencapsulation, 2012, 29, 138-146.	1.2	109
57	Comparison of intracellular accumulation and cytotoxicity of free <i>m</i> THPC and <i>m</i> THPC-loaded PLGA nanoparticles in human colon carcinoma cells. Nanotechnology, 2011, 22, 245102.	1.3	25
58	Photosensitizer loaded HSA nanoparticles II: In vitro investigations. International Journal of Pharmaceutics, 2011, 404, 308-316.	2.6	34
59	Targeted human serum albumin nanoparticles for specific uptake in EGFR-Expressing colon carcinoma cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 454-463.	1.7	65
60	Comprehensive in vitro investigations on biodegradable photosensitizer-nanoparticle delivery systems. Journal of Controlled Release, 2010, 148, e117-e118.	4.8	4
61	N-acetyl-l-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochemical Pharmacology, 2010, 79, 413-420.	2.0	171
62	Photophysical evaluation of mTHPC-loaded HSA nanoparticles as novel PDT delivery systems. Journal of Photochemistry and Photobiology B: Biology, 2010, 101, 340-347.	1.7	31
63	Photosensitizer loaded HSA nanoparticles. I: Preparation and photophysical properties. International Journal of Pharmaceutics, 2010, 393, 254-263.	2.6	56
64	Nanoparticles for Cell Specific Drug Delivery. Scientia Pharmaceutica, 2010, 78, 546-546.	0.7	0
65	Enhanced drug targeting by attachment of an anti αv integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials, 2010, 31, 2388-2398.	5.7	129
66	Novel photosensitizer-protein nanoparticles for Photodynamic therapy: Photophysical characterization and in vitro investigations. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 66-74.	1.7	80
67	Uptake of plasmid-loaded nanoparticles in breast cancer cells and effect on Plk1 expression. Journal of Drug Targeting, 2009, 17, 627-637.	2.1	21
68	Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 428-437.	2.0	106
69	Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials, 2008, 29, 4022-4028.	5.7	74
70	Human serum albumin (HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. International Journal of Pharmaceutics, 2008, 347, 109-117.	2.6	204
71	Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. International Journal of Pharmaceutics, 2008, 363, 162-169.	2.6	97
72	Specific Targeting of HER2 Overexpressing Breast Cancer Cells with Doxorubicin-Loaded Trastuzumab-Modified Human Serum Albumin Nanoparticles. Bioconjugate Chemistry, 2008, 19, 2321-2331.	1.8	122

#	Article	IF	CITATIONS
73	Downregulation of Plk1 Expression By Receptor-Mediated Uptake of Antisense Oligonucleotide-Loaded Nanoparticles. Neoplasia, 2008, 10, 223-234.	2.3	44
74	Cisplatin-Resistant Neuroblastoma Cells Express Enhanced Levels of Epidermal Growth Factor Receptor (EGFR) and Are Sensitive to Treatment with EGFR-Specific Toxins. Clinical Cancer Research, 2008, 14, 6531-6537.	3.2	48
75	Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: Focus on cardio- and testicular toxicity. International Journal of Pharmaceutics, 2007, 337, 346-356.	2.6	66
76	Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. International Journal of Pharmaceutics, 2007, 341, 207-214.	2.6	255
77	Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. Journal of Controlled Release, 2007, 118, 54-58.	4.8	247
78	Covalent Linkage of Apolipoprotein E to Albumin Nanoparticles Strongly Enhances Drug Transport into the Brain. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1246-1253.	1.3	325
79	Trastuzumab-modified nanoparticles: Optimisation of preparation and uptake in cancer cells. Biomaterials, 2006, 27, 4975-4983.	5.7	190
80	Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials, 2005, 26, 5898-5906.	5.7	195
81	Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials, 2005, 26, 2723-2732.	5.7	209
82	Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles. Journal of Controlled Release, 2004, 96, 483-495.	4.8	121
83	Highly Specific HER2-mediated Cellular Uptake of Antibody-modified Nanoparticles in Tumour Cells. Journal of Drug Targeting, 2004, 12, 461-471.	2.1	193
84	Incorporation of biodegradable nanoparticles into human airway epithelium cells—in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochemical and Biophysical Research Communications, 2004, 318, 562-570.	1.0	109
85	Pharmacological activity of DTPA linked to protein-based drug carrier systems. Biochemical and Biophysical Research Communications, 2004, 323, 1236-1240.	1.0	23
86	Human serum albumin–polyethylenimine nanoparticles for gene delivery. Journal of Controlled Release, 2003, 92, 199-208.	4.8	164
87	Optimization of the preparation process for human serum albumin (HSA) nanoparticles. International Journal of Pharmaceutics, 2003, 257, 169-180.	2.6	628
88	Characterization of serum albumin nanoparticles by sedimentation velocity analysis and electron microscopy. , 2002, , 31-36.		26
89	Coupling of the antitumoral enzyme bovine seminal ribonuclease to polyethylene glycol chains increases its systemic efficacy in mice. Anti-Cancer Drugs, 2002, 13, 149-154.	0.7	15
90	Bovine seminal ribonuclease attached to nanoparticles made of polylactic acid kills leukemia and lymphoma cell lines in vitro. Anti-Cancer Drugs, 2000, 11, 369-376.	0.7	27

#	Article	IF	CITATIONS
91	Cytotoxicity of aphidicolin and its derivatives against neuroblastoma cells in vitro: synergism with doxorubicin and vincristine. Anti-Cancer Drugs, 2000, 11, 479-485.	0.7	6
92	Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics, 2000, 194, 91-102.	2.6	500
93	Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). International Journal of Pharmaceutics, 2000, 196, 147-149.	2.6	90
94	Desolvation process and surface characteristics of HSA-nanoparticles. International Journal of Pharmaceutics, 2000, 196, 197-200.	2.6	141
95	Preparation of surface modified protein nanoparticles by introduction of sulfhydryl groups. International Journal of Pharmaceutics, 2000, 211, 67-78.	2.6	83
96	Preparation of avidin-labeled protein nanoparticles as carriers for biotinylated peptide nucleic acid. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 49, 303-307.	2.0	62
97	Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. Journal of Microencapsulation, 2000, 17, 187-193.	1.2	340
98	Simple and efficient method for the detection of diethylenetriaminepentaacetic acid. Biomedical Applications, 1999, 736, 299-303.	1.7	4
99	Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharmaceutical Research, 1997, 14, 325-328.	1.7	321
100	Quantitative colorimetric and gas chromatoographic determination of arecaidine propargyl ester. Biomedical Applications, 1997, 692, 345-350.	1.7	5
101	Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. International Journal of Pharmaceutics, 1997, 158, 219-231.	2.6	30
102	Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. International Journal of Pharmaceutics, 1997, 158, 211-217.	2.6	25
103	Characterization of polybutyleyanoacrylate nanoparticles. Part II: Determination of polymer content by NMR-analysis. International Journal of Pharmaceutics, 1996, 128, 189-195.	2.6	15
104	Methylmethacrylate sulfopropylmethacrylate copolymer nanoparticles for drug delivery. Part I: Preparation and physicochemical characterization. International Journal of Pharmaceutics, 1996, 137, 67-74.	2.6	24
105	Characterisation of polybutylcyanoarylate nanoparticles: I. Quantification of PCBA polymer and dextrans. International Journal of Pharmaceutics, 1994, 110, 21-27.	2.6	21