Yunqi Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/249218/publications.pdf

Version: 2024-02-01

352 papers 35,973 citations

81
h-index

182 g-index

362 all docs 362 docs citations

362 times ranked

33552 citing authors

#	Article	IF	CITATIONS
1	Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001, , $1740-1741$.	2.2	6,387
2	Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chemical Reviews, 2012, 112, 2208-2267.	23.0	3,164
3	Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 2009, 9, 1752-1758.	4.5	2,822
4	Chemical doping of graphene. Journal of Materials Chemistry, 2011, 21, 3335-3345.	6.7	1,433
5	A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Scientific Reports, 2012, 2, 754.	1.6	800
6	Highly Ï€â€Extended Copolymers with Diketopyrrolopyrrole Moieties for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 4618-4622.	11.1	707
7	25th Anniversary Article: Recent Advances in nâ€Type and Ambipolar Organic Fieldâ€Effect Transistors. Advanced Materials, 2013, 25, 5372-5391.	11.1	608
8	Efficient blue emission from siloles. Journal of Materials Chemistry, 2001, 11, 2974-2978.	6.7	590
9	Functional Organic Fieldâ€Effect Transistors. Advanced Materials, 2010, 22, 4427-4447.	11.1	526
10	Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7992-7996.	3.3	417
11	Advances in organic field-effect transistors. Journal of Materials Chemistry, 2005, 15, 53.	6.7	394
12	Controllable Synthesis of Graphene and Its Applications. Advanced Materials, 2010, 22, 3225-3241.	11.1	375
13	Patterned Graphene as Source/Drain Electrodes for Bottomâ€Contact Organic Fieldâ€Effect Transistors. Advanced Materials, 2008, 20, 3289-3293.	11.1	373
14	Scalable Production of a Few-Layer MoS ₂ /WS ₂ Vertical Heterojunction Array and Its Application for Photodetectors. ACS Nano, 2016, 10, 573-580.	7.3	362
15	Facile Synthesis of 3D MnO ₂ –Graphene and Carbon Nanotube–Graphene Composite Networks for Highâ€Performance, Flexible, Allâ€Solidâ€State Asymmetric Supercapacitors. Advanced Energy Materials, 2014, 4, 1400064.	10.2	360
16	Design of Highâ∈Mobility Diketopyrrolopyrroleâ∈Based Ï∈â∈Conjugated Copolymers for Organic Thinâ∈Film Transistors. Advanced Materials, 2015, 27, 3589-3606.	11.1	350
17	Interface Engineering: An Effective Approach toward High-Performance Organic Field-Effect Transistors. Accounts of Chemical Research, 2009, 42, 1573-1583.	7.6	321
18	Insight into High-Performance Conjugated Polymers for Organic Field-Effect Transistors. CheM, 2018, 4, 2748-2785.	5.8	313

#	Article	IF	CITATIONS
19	A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visualâ€Perception System. Advanced Materials, 2018, 30, e1803961.	11.1	292
20	Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 9274-9276.	1.2	289
21	Core-Expanded Naphthalene Diimides Fused with 2-(1,3-Dithiol-2-Ylidene)Malonitrile Groups for High-Performance, Ambient-Stable, Solution-Processed n-Channel Organic Thin Film Transistors. Journal of the American Chemical Society, 2010, 132, 3697-3699.	6.6	274
22	Experimental Techniques for the Fabrication and Characterization of Organic Thin Films for Field-Effect Transistors. Chemical Reviews, 2011, 111, 3358-3406.	23.0	241
23	New Series of Blue-Emitting and Electron-Transporting Copolymers Based on Fluorene. Macromolecules, 2002, 35, 2529-2537.	2.2	235
24	Monolayer Hexagonal Boron Nitride Films with Large Domain Size and Clean Interface for Enhancing the Mobility of Grapheneâ€Based Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 1559-1564.	11.1	209
25	A Solutionâ€Processable Small Molecule Based on Benzodithiophene and Diketopyrrolopyrrole for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1166-1170.	10.2	203
26	Advances in flexible organic field-effect transistors and their applications for flexible electronics. Npj Flexible Electronics, 2022, 6, .	5.1	194
27	Exploration of Near-Infrared Organic Photodetectors. Chemistry of Materials, 2019, 31, 6359-6379.	3.2	189
28	Highâ€Performance, Airâ€Stable Fieldâ€Effect Transistors Based on Heteroatomâ€Substituted Naphthalenediimideâ€Benzothiadiazole Copolymers Exhibiting Ultrahigh Electron Mobility up to 8.5 cm V ^{â~1} s ^{â~1} . Advanced Materials, 2017, 29, 1602410.	11.1	187
29	Multibit Storage of Organic Thinâ€Film Fieldâ€Effect Transistors. Advanced Materials, 2009, 21, 1954-1959.	11.1	178
30	Equiangular Hexagonâ€Shapeâ€Controlled Synthesis of Graphene on Copper Surface. Advanced Materials, 2011, 23, 3522-3525.	11.1	173
31	Allâ€Solutionâ€Processed, Highâ€Performance nâ€Channel Organic Transistors and Circuits: Toward Lowâ€Cost Ambient Electronics. Advanced Materials, 2011, 23, 2448-2453.	11.1	172
32	Organic printed photonics: From microring lasers to integrated circuits. Science Advances, 2015, 1, e1500257.	4.7	172
33	Black Arsenic: A Layered Semiconductor with Extreme Inâ€Plane Anisotropy. Advanced Materials, 2018, 30, e1800754.	11.1	161
34	Highâ€Performance Airâ€Stable Bipolar Fieldâ€Effect Transistors of Organic Singleâ€Crystalline Ribbons with an Airâ€Gap Dielectric. Advanced Materials, 2008, 20, 1511-1515.	11,1	157
35	Immobilization of tetra-tert-butylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials. Journal of Materials Chemistry, 2002, 12, 1636-1639.	6.7	156
36	Inkjet Printing Highâ€Resolution, Largeâ€Area Graphene Patterns by Coffeeâ€Ring Lithography. Advanced Materials, 2012, 24, 436-440.	11.1	154

#	Article	IF	CITATIONS
37	Engineering of the dielectric–semiconductor interface in organic field-effect transistors. Journal of Materials Chemistry, 2010, 20, 2599.	6.7	153
38	Self-organized graphene crystal patterns. NPG Asia Materials, 2013, 5, e36-e36.	3.8	153
39	Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nature Biomedical Engineering, 2022, 6, 276-285.	11.6	153
40	Organic Solar Cells Based on a 2D Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]difuranâ€Conjugated Polymer with Highâ€Power Conversion Efficiency. Advanced Materials, 2015, 27, 6969-6975.	11.1	151
41	Reduction of graphene oxide to highly conductive graphene by Lawesson's reagent and its electrical applications. Journal of Materials Chemistry C, 2013, 1, 3104.	2.7	150
42	Core-Expanded Naphthalene Diimides Fused with Sulfur Heterocycles and End-Capped with Electron-Withdrawing Groups for Air-Stable Solution-Processed n-Channel Organic Thin Film Transistors. Chemistry of Materials, 2011, 23, 1204-1215.	3.2	147
43	Scalable Synthesis of Freestanding Sandwich-structured Graphene/Polyaniline/Graphene Nanocomposite Paper for Flexible All-Solid-State Supercapacitor. Scientific Reports, 2015, 5, 9359.	1.6	147
44	Fractal Etching of Graphene. Journal of the American Chemical Society, 2013, 135, 6431-6434.	6.6	140
45	When Flexible Organic Fieldâ€Effect Transistors Meet Biomimetics: A Prospective View of the Internet of Things. Advanced Materials, 2020, 32, e1901493.	11.1	136
46	Novel Functional Conjugative Hyperbranched Polymers with Aggregationâ€Induced Emission: Synthesis Through Oneâ€Pot "A ₂ +B ₄ â€Induced Emission: Synthesis Chemsensors and Application as Explosive Chemsensors and PLEDs. Macromolecular Rapid Communications, 2012, 33, 164-171.	2.0	135
47	Graphene-coated silica as a highly efficient sorbent for residual organophosphorus pesticides in water. Journal of Materials Chemistry A, 2013, 1, 1875-1884.	5.2	133
48	A conjugated hyperbranched polymer constructed from carbazole and tetraphenylethylene moieties: convenient synthesis through one-pot "A2 + B4―Suzuki polymerization, aggregation-induced enhanced emission, and application as explosive chemosensors and PLEDs. Journal of Materials Chemistry, 2012, 22, 6374.	6.7	132
49	Nearâ€Equilibrium Chemical Vapor Deposition of Highâ€Quality Singleâ€Crystal Graphene Directly on Various Dielectric Substrates. Advanced Materials, 2014, 26, 1348-1353.	11.1	132
50	The Intramolecular Junctions of Carbon Nanotubes. Advanced Materials, 2008, 20, 2815-2841.	11.1	126
51	Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes. Nature Communications, 2013, 4, 1374.	5.8	125
52	Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Research, 2011, 4, 1208-1214.	5.8	120
53	Highâ€Performance Phototransistors Based on Organic Microribbons Prepared by a Solution Selfâ€Assembly Process. Advanced Functional Materials, 2010, 20, 1019-1024.	7.8	119
54	Naphthalenediimide-Based Copolymers Incorporating Vinyl-Linkages for High-Performance Ambipolar Field-Effect Transistors and Complementary-Like Inverters under Air. Chemistry of Materials, 2013, 25, 3589-3596.	3.2	119

#	Article	IF	Citations
55	Isoindigoâ€Based Polymers with Small Effective Masses for Highâ€Mobility Ambipolar Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1702115.	11.1	115
56	Regioregular Bis-Pyridal[2,1,3]thiadiazole-Based Semiconducting Polymer for High-Performance Ambipolar Transistors. Journal of the American Chemical Society, 2017, 139, 17735-17738.	6.6	115
57	Flexible, Lowâ€Voltage and Highâ€Performance Polymer Thinâ€Film Transistors and Their Application in Photo/Thermal Detectors. Advanced Materials, 2014, 26, 3631-3636.	11.1	107
58	Substrateâ€Free Ultraâ€Flexible Organic Fieldâ€Effect Transistors and Fiveâ€Stage Ring Oscillators. Advanced Materials, 2013, 25, 5455-5460.	11.1	106
59	Encapsulating Pd Nanoparticles in Double-Shelled Graphene@Carbon Hollow Spheres for Excellent Chemical Catalytic Property. Scientific Reports, 2014, 4, 4053.	1.6	106
60	Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors. Materials Chemistry Frontiers, 2017, 1, 2423-2456.	3.2	106
61	Asymmetrical Small Molecule Acceptor Enabling Nonfullerene Polymer Solar Cell with Fill Factor Approaching 79%. ACS Energy Letters, 2018, 3, 1760-1768.	8.8	102
62	Low bandgap Ï€â€conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structureâ€property relationship study. Journal of Polymer Science Part A, 2009, 47, 5498-5508.	2.5	100
63	Bisâ€Diketopyrrolopyrrole Moiety as a Promising Building Block to Enable Balanced Ambipolar Polymers for Flexible Transistors. Advanced Materials, 2017, 29, 1606162.	11.1	99
64	Van der Waals Epitaxial Growth of Atomic Layered HfS ₂ Crystals for Ultrasensitive Nearâ€Infrared Phototransistors. Advanced Materials, 2017, 29, 1700439.	11.1	96
65	A Retinaâ€Like Dual Band Organic Photosensor Array for Filterâ€Free Nearâ€Infraredâ€toâ€Memory Operations. Advanced Materials, 2017, 29, 1701772.	11.1	95
66	Electrochemical Synthesis of Large Area Twoâ€Dimensional Metal–Organic Framework Films on Copper Anodes. Angewandte Chemie - International Edition, 2021, 60, 2887-2891.	7.2	94
67	First Synthesis of 2,3,6,7-Tetrabromonaphthalene Diimide. Organic Letters, 2007, 9, 3917-3920.	2.4	93
68	Electrical Assembly and Reduction of Graphene Oxide in a Single Solution Step for Use in Flexible Sensors. Advanced Materials, 2011, 23, 4626-4630.	11.1	93
69	Growth and Etching of Monolayer Hexagonal Boron Nitride. Advanced Materials, 2015, 27, 4858-4864.	11.1	93
70	Highâ€Mobility Conjugated Polymers Based on Fusedâ€Thiophene Building Blocks. Macromolecular Chemistry and Physics, 2011, 212, 428-443.	1.1	92
71	Large-area, flexible imaging arrays constructed by light-charge organic memories. Scientific Reports, 2013, 3, 1080.	1.6	92
72	Highâ€Performance Organic Fieldâ€Effect Transistors with Lowâ€Cost Copper Electrodes. Advanced Materials, 2008, 20, 1286-1290.	11.1	91

#	Article	IF	CITATIONS
73	Improvements in Stability and Performance of <i>N,N′</i> êDialkyl Perylene Diimideâ€Based nâ€Type Thinâ€Fil Transistors. Advanced Materials, 2009, 21, 1631-1635.	lm 11.1	90
74	Smallâ€Molecule Solar Cells with Fill Factors up to 0.75 via a Layerâ€byâ€Layer Solution Process. Advanced Energy Materials, 2014, 4, 1300626.	10.2	90
75	Monolayer Twoâ€dimensional Molecular Crystals for an Ultrasensitive OFETâ€based Chemical Sensor. Angewandte Chemie - International Edition, 2020, 59, 4380-4384.	7.2	90
76	Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chemical Reviews, 2022, 122, 10319-10392.	23.0	89
77	Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices. Accounts of Chemical Research, 2013, 46, 106-115.	7.6	88
78	Hierarchy of graphene wrinkles induced by thermal strain engineering. Applied Physics Letters, 2013, 103, .	1.5	87
79	Sequence of Silicon Monolayer Structures Grown on a Ru Surface: from a Herringbone Structure to Silicene. Nano Letters, 2017, 17, 1161-1166.	4.5	86
80	Diketopyrrolopyrrole-Based π-Conjugated Copolymer Containing β-Unsubstituted Quintetthiophene Unit: A Promising Material Exhibiting High Hole-Mobility for Organic Thin-Film Transistors. Chemistry of Materials, 2012, 24, 4350-4356.	3.2	85
81	Free radical sensors based on inner-cutting graphene field-effect transistors. Nature Communications, 2019, 10, 1544.	5.8	85
82	Phase dependence of single crystalline transistors of tetrathiafulvalene. Applied Physics Letters, 2007, 91, .	1.5	82
83	Solution processed organic field-effect transistors and their application in printed logic circuits. Journal of Materials Chemistry, 2010, 20, 7059.	6.7	82
84	Highâ€Performance Organic Transistor Memory Elements with Steep Flanks of Hysteresis. Advanced Functional Materials, 2008, 18, 2593-2601.	7.8	81
85	New Donor–Acceptor–Donor Molecules with Pechmann Dye as the Core Moiety for Solution-Processed Good-Performance Organic Field-Effect Transistors. Chemistry of Materials, 2013, 25, 471-478.	3.2	81
86	Direct SARS-CoV-2 Nucleic Acid Detection by Y-Shaped DNA Dual-Probe Transistor Assay. Journal of the American Chemical Society, 2021, 143, 17004-17014.	6.6	79
87	Wide-Energy-Gap Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2009, 21, 1333-1342.	3.2	77
88	Active Morphology Control for Concomitant Long Distance Spin Transport and Photoresponse in a Single Organic Device. Advanced Materials, 2016, 28, 2609-2615.	11.1	77
89	Ultrasensitive and selective sensing of heavy metal ions with modified graphene. Chemical Communications, 2013, 49, 6492.	2.2	76
90	Heteroatom Substituted Organic/Polymeric Semiconductors and their Applications in Field ffect Transistors. Advanced Materials, 2014, 26, 6898-6904.	11.1	75

#	Article	IF	Citations
91	Organic Synaptic Transistors: The Evolutionary Path from Memory Cells to the Application of Artificial Neural Networks. Advanced Functional Materials, 2021, 31, 2101951.	7.8	73
92	Design and synthesis of high performance π-conjugated materials through antiaromaticity and quinoid strategy for organic field-effect transistors. Materials Science and Engineering Reports, 2019, 136, 13-26.	14.8	72
93	Conjugated Polymers of Rylene Diimide and Phenothiazine for n-Channel Organic Field-Effect Transistors. Macromolecules, 2012, 45, 4115-4121.	2.2	71
94	Novel global-like second-order nonlinear optical dendrimers: convenient synthesis through powerful click chemistry and large NLO effects achieved by using simple azo chromophore. Chemical Science, 2012, 3, 1256.	3.7	70
95	Fast Deposition of Aligning Edgeâ€On Polymers for Highâ€Mobility Ambipolar Transistors. Advanced Materials, 2019, 31, e1805761.	11.1	70
96	Organic thin-film transistors of phthalocyanines. Pure and Applied Chemistry, 2008, 80, 2231-2240.	0.9	69
97	New tetrathiafulvalene fused-naphthalene diimides for solution-processible and air-stable p-type and ambipolar organic semiconductors. Chemical Science, 2012, 3, 2530.	3.7	67
98	A Flexible Acetylcholinesterase-Modified Graphene for Chiral Pesticide Sensor. Journal of the American Chemical Society, 2019, 141, 14643-14649.	6.6	67
99	An Acetylene-Containing Perylene Diimide Copolymer for High Mobility n-Channel Transistor in Air. Macromolecules, 2013, 46, 2152-2158.	2.2	66
100	Governing Rule for Dynamic Formation of Grain Boundaries in Grown Graphene. ACS Nano, 2015, 9, 5792-5798.	7.3	66
101	Dualâ€Mode Learning of Ambipolar Synaptic Phototransistor Based on 2D Perovskite/Organic Heterojunction for Flexible Color Recognizable Visual System. Small, 2021, 17, e2102820.	5.2	66
102	Organic thin film transistors based on stable amorphous ladder tetraazapentacenes semiconductors. Journal of Materials Chemistry, 2005, 15, 4894.	6.7	65
103	Anthra[2,3- <i>b</i>]benzo[<i>d</i>]thiophene: An Air-Stable Asymmetric Organic Semiconductor with High Mobility at Room Temperature. Chemistry of Materials, 2008, 20, 4188-4190.	3.2	65
104	Dielectric Engineering of a Boron Nitride/Hafnium Oxide Heterostructure for Highâ€Performance 2D Field Effect Transistors. Advanced Materials, 2016, 28, 2062-2069.	11.1	65
105	Design, Synthesis, and Properties of Asymmetrical Heteroacene and Its Application in Organic Electronics. Journal of Physical Chemistry C, 2010, 114, 10565-10571.	1.5	64
106	Ultrasensitive Detection of SARS-CoV-2 Antibody by Graphene Field-Effect Transistors. Nano Letters, 2021, 21, 7897-7904.	4.5	64
107	Control Synthesis of Silver Nanosheets, Chainlike Sheets, and Microwires via a Simple Solventâ´Thermal Method. Crystal Growth and Design, 2007, 7, 900-904.	1.4	63
108	Hierarchical Nanoporous Gold-Platinum with Heterogeneous Interfaces for Methanol Electrooxidation. Scientific Reports, 2014, 4, 4370.	1.6	63

#	Article	IF	CITATIONS
109	Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Materials for Applications. Accounts of Chemical Research, 2021, 54, 1011-1022.	7.6	63
110	Growth and Grain Boundaries in 2D Materials. ACS Nano, 2020, 14, 9320-9346.	7.3	62
111	New Azo Chromophoreâ€Containing Conjugated Polymers: Facile Synthesis by Using "Click―Chemistry and Enhanced Nonlinear Optical Properties Through the Introduction of Suitable Isolation Groups. Macromolecular Rapid Communications, 2008, 29, 136-141.	2.0	61
112	Chemical Formation and Multiple Applications of Organic–Inorganic Hybrid Perovskite Materials. Journal of the American Chemical Society, 2019, 141, 1406-1414.	6.6	61
113	Direct Four-Probe Measurement of Grain-Boundary Resistivity and Mobility in Millimeter-Sized Graphene. Nano Letters, 2017, 17, 5291-5296.	4.5	59
114	Faceâ€toâ€Face Growth of Waferâ€Scale 2D Semiconducting MOF Films on Dielectric Substrates. Advanced Materials, 2021, 33, e2007741.	11.1	58
115	The ultrafast intramolecular dynamics of phthalocyanine and porphyrin derivatives. Journal of Chemical Physics, 1996, 105, 5377-5379.	1.2	55
116	A novel air-stable n-type organic semiconductor: 4,4′-bis[(6,6′-diphenyl)-2,2-difluoro-1,3,2-dioxaborine] and its application in organic ambipolar field-effect transistors. Journal of Materials Chemistry, 2006, 16, 4499-4503.	6.7	55
117	Solventâ€Assisted Reâ€annealing of Polymer Films for Solutionâ€Processable Organic Fieldâ€Effect Transistors. Advanced Materials, 2010, 22, 1273-1277.	11.1	54
118	Highly Organized Epitaxy of Dirac Semimetallic PtTe ₂ Crystals with Extrahigh Conductivity and Visible Surface Plasmons at Edges. ACS Nano, 2018, 12, 9405-9411.	7.3	54
119	Monolayer organic field-effect transistors. Science China Chemistry, 2019, 62, 313-330.	4.2	54
120	High-mobility thin-film transistors based on aligned carbon nanotubes. Applied Physics Letters, 2003, 83, 150-152.	1.5	53
121	One-Pot Microbial Method to Synthesize Dual-Doped Graphene and Its Use as High-Performance Electrocatalyst. Scientific Reports, 2013, 3, 3499.	1.6	53
122	Acceptor Modulation Strategies for Improving the Electron Transport in Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2022, 34, e2104325.	11,1	53
123	Phenyl-substituted fluorene-dimer cored anthracene derivatives: highly fluorescent and stable materials for high performance organic blue- and white-light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 3186.	6.7	52
124	Linear benzene-fused bis(tetrathiafulvalene) compounds for solution processed organic field-effect transistors. Journal of Materials Chemistry, 2007, 17, 736-743.	6.7	51
125	Novel Functionalized Conjugated Polythiophene with Oxetane Substituents: Synthesis, Optical, Electrochemical, and Field-Effect Properties. Macromolecules, 2009, 42, 3222-3226.	2.2	51
126	Novel copolymers incorporating dithieno[3,2-b:2′,3′-d]thiophene moieties for air-stable and high performance organic field-effect transistors. Journal of Materials Chemistry, 2008, 18, 3426.	6.7	49

#	Article	IF	CITATIONS
127	Effect of the Longer \hat{I}^2 -Unsubstituted Oliogothiophene Unit (6T and 7T) on the Organic Thin-Film Transistor Performances of Diketopyrrolopyrrole-Oliogothiophene Copolymers. Chemistry of Materials, 2013, 25, 4290-4296.	3.2	49
128	Twoâ€Dimensional Metalâ€Organic Framework Film for Realizing Optoelectronic Synaptic Plasticity. Angewandte Chemie - International Edition, 2021, 60, 17440-17445.	7.2	49
129	Large Femtosecond Third-Order Nonlinear Optical Response in a Novel Donorâ [*] Acceptor Copolymer Consisting of Ethynylfluorene and Tetraphenyldiaminobiphenyl Units. Chemistry of Materials, 2001, 13, 1540-1544.	3.2	48
130	Field dependent and high light sensitive organic phototransistors based on linear asymmetric organic semiconductor. Applied Physics Letters, 2009, 94, 143303.	1.5	48
131	Threeâ€Component Integrated Ultrathin Organic Photosensors for Plastic Optoelectronics. Advanced Materials, 2016, 28, 624-630.	11.1	48
132	Solid–solid interface growth of conductive metal–organic framework nanowire arrays and their supercapacitor application. Materials Chemistry Frontiers, 2020, 4, 243-251.	3.2	48
133	Ultraprecise Antigen 10-in-1 Pool Testing by Multiantibodies Transistor Assay. Journal of the American Chemical Society, 2021, 143, 19794-19801.	6.6	48
134	Synthesis and electroluminescence of poly(aryleneethynylene)s based on fluorene containing holeÂtransport units. Journal of Materials Chemistry, 2001, 11, 1606-1611.	6.7	47
135	Selfâ€Aligned Singleâ€Crystal Graphene Grains. Advanced Functional Materials, 2014, 24, 1664-1670.	7.8	47
136	Highâ€Mobility Organic Lightâ€Emitting Semiconductors and Its Optoelectronic Devices. Small Structures, 2021, 2, 2000083.	6.9	47
137	Recent progress in organic fieldâ€effect transistorâ€based integrated circuits. Journal of Polymer Science, 2022, 60, 311-327.	2.0	46
138	New series of AB ₂ â€type hyperbranched polytriazoles derived from the same polymeric intermediate: Different endcapping spacers with adjustable bulk and convenient syntheses via click chemistry under copper(I) catalysis. Journal of Polymer Science Part A, 2011, 49, 1977-1987.	2.5	45
139	Controllable preparation of patterns of aligned carbon nanotubes on metals and metal-coated silicon substrates. Journal of Materials Chemistry, 2003, 13, 1124-1126.	6.7	44
140	Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion. Nature Communications, 2022, 13, 1411.	5.8	44
141	Graphene: learning from carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 919-929.	6.7	43
142	Synthesis and properties of fluorene or carbazole-based and dicyanovinyl-capped n-type organic semiconductors. Journal of Materials Chemistry, 2008, 18, 1131.	6.7	42
143	Effects of structure-manipulated molecular stacking on solid-state optical properties and device performances. Polymer Chemistry, 2012, 3, 2832.	1.9	41
144	Application of organic field-effect transistors in memory. Materials Chemistry Frontiers, 2020, 4, 2845-2862.	3.2	40

#	Article	IF	Citations
145	Intrinsically flexible displays: key materials and devices. National Science Review, 2022, 9, .	4.6	40
146	New air-stable solution-processed organic n-type semiconductors based on sulfur-rich core-expanded naphthalene diimides. Journal of Materials Chemistry, 2011, 21, 18042.	6.7	39
147	Layerâ€Stacking Growth and Electrical Transport of Hierarchical Graphene Architectures. Advanced Materials, 2014, 26, 3218-3224.	11.1	39
148	Sub-5 nm single crystalline organic p–n heterojunctions. Nature Communications, 2021, 12, 2774.	5.8	39
149	Engineering of Amorphous Polymeric Insulators for Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2017, 3, 1700157.	2.6	38
150	Low Band Gap Donor–Acceptor Conjugated Polymers with Indanone-Condensed Thiadiazolo[3,4- <i>g</i>)quinoxaline Acceptors. Macromolecules, 2019, 52, 6149-6159.	2.2	38
151	Ultralowâ€Power and Multisensory Artificial Synapse Based on Electrolyteâ€Gated Vertical Organic Transistors. Advanced Functional Materials, 2022, 32, .	7.8	38
152	Effect of polymer chain conformation on field-effect transistor performance: synthesis and properties of two arylene imide based D–A copolymers. Journal of Materials Chemistry, 2012, 22, 14639.	6.7	37
153	An acceptorâ€acceptor conjugated copolymer based on perylene diimide for high mobility <i>n</i> â€ehannel transistor in air. Journal of Polymer Science Part A, 2012, 50, 4266-4271.	2.5	37
154	Self-Controlled Growth of Covalent Organic Frameworks by Repolymerization. Chemistry of Materials, 2020, 32, 5634-5640.	3.2	37
155	New semiconductors based on triphenylamine with macrocyclic architecture: synthesis, properties and applications in OFETs. Journal of Materials Chemistry, 2007, 17, 4483.	6.7	36
156	Narrow band gap D–A copolymer of indacenodithiophene and diketopyrrolopyrrole with deep HOMO level: Synthesis and application in fieldâ€effect transistors and polymer solar cells. Journal of Polymer Science Part A, 2012, 50, 371-377.	2.5	35
157	Synthesis and characterization of a quinoxaline compound containing polyphenylphenyl and strong electron-accepting groups, and its multiple applications in electroluminescent devices. Journal of Materials Chemistry, 2008, 18, 299-305.	6.7	34
158	An Alternative Approach to Constructing Solution Processable Multifunctional Materials: Their Structure, Properties, and Application in Highâ€Performance Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2010, 20, 3125-3135.	7.8	34
159	Water-assisted growth of large-sized single crystal hexagonal boron nitride grains. Materials Chemistry Frontiers, 2017, 1, 1836-1840.	3.2	34
160	The effect of thickness on the optoelectronic properties of organic field-effect transistors: towards molecular crystals at monolayer limit. Journal of Materials Chemistry C, 2020, 8, 13154-13168.	2.7	34
161	Ultrafast <i>In Situ</i> Synthesis of Large-Area Conductive Metal–Organic Frameworks on Substrates for Flexible Chemiresistive Sensing. ACS Applied Materials & Interfaces, 2020, 12, 57235-57244.	4.0	34
162	Ultrahighâ€Performance Optoelectronic Skin Based on Intrinsically Stretchable Perovskiteâ€Polymer Heterojunction Transistors. Advanced Materials, 2022, 34, e2107304.	11.1	34

#	Article	IF	CITATIONS
163	Phthalocyanine Monolayer-Modified Gold Substrates as Efficient Anodes for Organic Light-Emitting Diodes. Journal of Physical Chemistry B, 2003, 107, 12639-12642.	1.2	33
164	Alignment of linear polymeric grains for highly stable N-type thin-film transistors. CheM, 2021, 7, 1258-1270.	5.8	33
165	Rapid SARS-CoV-2 Nucleic Acid Testing and Pooled Assay by Tetrahedral DNA Nanostructure Transistor. Nano Letters, 2021, 21, 9450-9457.	4.5	33
166	Synthesis and characterization of a novel unsymmetrical metalâ€free phthalocyanine with donorâ€acceptor substituents. Journal of Heterocyclic Chemistry, 1994, 31, 1017-1020.	1.4	32
167	Photophysical properties of polyphenylphenyl compounds in aqueous solutions and application of their nanoparticles for nucleobase sensing. Journal of Materials Chemistry, 2008, 18, 2555.	6.7	32
168	Synthesis, structure, optoelectronic properties of novel zinc Schiff-base complexes. Science Bulletin, 2013, 58, 2733-2740.	1.7	32
169	Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar Transistors and Highâ€Gain Inverters. Advanced Materials, 2018, 30, e1801951.	11.1	32
170	Improving the Electronic Transporting Property for Flexible Field-Effect Transistors with Naphthalene Diimide-Based Conjugated Polymer through Branching/Linear Side-Chain Engineering Strategy. ACS Applied Materials & Diterfaces, 2019, 11, 15837-15844.	4.0	32
171	Tunable Planar Focusing Based on Hyperbolic Phonon Polaritons in αâ€MoO ₃ . Advanced Materials, 2022, 34, e2105590.	11.1	32
172	Polyurethanes Containing Indoleâ∈Based Nonâ∈Linear Optical Chromophores: from Linear Chromophore to Hâ∈Type. Macromolecular Rapid Communications, 2008, 29, 798-803.	2.0	31
173	Controlling Fundamental Fluctuations for Reproducible Growth of Large Single-Crystal Graphene. ACS Nano, 2018, 12, 1778-1784.	7.3	31
174	A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics. Science Advances, 2021, 7, .	4.7	31
175	Electrically Conductive Metal–Organic Framework Thin Filmâ€Based Onâ€Chip Microâ€Biosensor: A Platform to Unravel Surface Morphologyâ€Dependent Biosensing. Advanced Functional Materials, 2021, 31, 2102855.	7.8	31
176	A non-planar pentaphenylbenzene functionalized benzo [2,1,3] thiadiazole derivative as a novel red molecular emitter for non-doped organic light-emitting diodes. Journal of Materials Chemistry, 2008, 18, 2709.	6.7	30
177	Synthesis and morphology transformation of single-crystal graphene domains based on activated carbon dioxide by chemical vapor deposition. Journal of Materials Chemistry C, 2013, 1, 2990.	2.7	30
178	Synthesis and properties of crown ether containing poly(p-phenylenevinylene). Journal of Materials Chemistry, 2001, 11, 3063-3067.	6.7	29
179	Synthesis, Structure, Electronic State, and Luminescent Properties of Novel Blueâ€Lightâ€Emitting Arylâ€Gubstituted 9,9â€Di(4â€(diâ€ <i>p</i> àâ€tolyl)aminophenyl)fluorenes. Advanced Functional Materials, 2008, 18, 2335-2347.	, 7.8	29
180	Inkjetâ€Printed Organic Electrodes for Bottomâ€Contact Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2011, 21, 786-791.	7.8	29

#	Article	IF	CITATIONS
181	Benzodifuranâ€containing wellâ€defined Ï€â€conjugated polymers for photovoltaic cells. Journal of Polymer Science Part A, 2012, 50, 2935-2943.	2.5	29
182	Solution-processed core-extended naphthalene diimides toward organic n-type and ambipolar semiconductors. Journal of Materials Chemistry C, 2013, 1, 2688.	2.7	29
183	"Regioselective Deposition―Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards Allâ€Solutionâ€Processed, Highâ€Performance, Bottomâ€Contacted, Flexible, Polymerâ€Based Electronics. Advanced Functional Materials, 2014, 24, 3783-3789.	7.8	29
184	Ï€-Extended Isoindigo-Based Derivative: A Promising Electron-Deficient Building Block for Polymer Semiconductors. ACS Applied Materials & Semiconductors.	4.0	29
185	Highâ€Performance Ambipolar Polymers Based on Electronâ€Withdrawing Group Substituted Bayâ€Annulated Indigo. Advanced Functional Materials, 2019, 29, 1804839.	7.8	29
186	Multiwall nanotubes with intramolecular junctions (CNx/C): Preparation, rectification, logic gates, and application. Applied Physics Letters, 2004, 84, 4932-4934.	1.5	28
187	Highly efficient blue electrophosphorescent devices with a new series of host materials: polyphenylene-dendronized oxadiazole derivatives. Journal of Materials Chemistry, 2007, 17, 3788.	6.7	28
188	Wide band gap copolymers based on phthalimide: synthesis, characterization, and photovoltaic properties with 3.70% efficiency. Polymer Chemistry, 2013, 4, 2174.	1.9	28
189	Epitaxial Growth of hâ€BN on Templates of Various Dimensionalities in hâ€BN–Graphene Material Systems. Advanced Materials, 2019, 31, e1805582.	11.1	28
190	Copolymers of Bis-Diketopyrrolopyrrole and Benzothiadiazole Derivatives for High-Performance Ambipolar Field-Effect Transistors on Flexible Substrates. ACS Applied Materials & Eamp; Interfaces, 2018, 10, 25858-25865.	4.0	27
191	Perovskite photodetectors and their application in artificial photonic synapses. Chemical Communications, 2021, 57, 11429-11442.	2.2	27
192	Toward Efficient Charge Transport of Polymer-Based Organic Field-Effect Transistors: Molecular Design, Processing, and Functional Utilization. Accounts of Materials Research, 2021, 2, 1047-1058.	5.9	27
193	An all-C–H-activation strategy to rapidly synthesize high-mobility well-balanced ambipolar semiconducting polymers. Matter, 2022, 5, 1953-1968.	5.0	27
194	Poly(thienyleneâ€vinyleneâ€thienylene) with cyano substituent: Synthesis and application in fieldâ€effect transistor and polymer solar cell. Journal of Polymer Science Part A, 2009, 47, 4028-4036.	2.5	26
195	Phenanthro[1,10,9,8-cdefg]carbazole-containing copolymer for high performance thin-film transistors and polymer solar cells. Journal of Materials Chemistry, 2012, 22, 3696.	6.7	26
196	Highly sensitive thin film phototransistors based on a copolymer of benzodithiophene and diketopyrrolopyrrole. Journal of Materials Chemistry C, 2015, 3, 1942-1948.	2.7	26
197	Antifouling Fieldâ€Effect Transistor Sensing Interface Based on Covalent Organic Frameworks. Advanced Electronic Materials, 2020, 6, 1901169.	2.6	26
198	Isomeric Acceptor–Acceptor Polymers: Enabling Electron Transport with Strikingly Different Semiconducting Properties in <i>n</i> -Channel Organic Thin-Film Transistors. Chemistry of Materials, 2022, 34, 1403-1413.	3.2	26

#	Article	IF	CITATIONS
199	Synthesis, Structural Characterization, and Field-Effect Transistor Properties of <i>n</i> -Channel Semiconducting Polymers Containing Five-Membered Heterocyclic Acceptors: Superiority of Thiadiazole Compared with Oxadiazole. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33051-33059.	4.0	25
200	NIR polymers and phototransistors. Journal of Materials Chemistry C, 2018, 6, 13049-13058.	2.7	25
201	Capillaryâ€Confinement Crystallization for Monolayer Molecular Crystal Arrays. Advanced Materials, 2022, 34, e2107574.	11.1	25
202	A Generalized Method for Evaluating the Metallic-to-Semiconducting Ratio of Separated Single-Walled Carbon Nanotubes by UVâ^'visâ^'NIR Characterization. Journal of Physical Chemistry C, 2010, 114, 12095-12098.	1.5	24
203	Synthesis and charge-transporting properties of electron-deficient CN2–fluorene based D–A copolymers. Polymer Chemistry, 2012, 3, 2170.	1.9	24
204	A two-dimensional molecule with a large conjugation degree: synthesis, two-photon absorption and charge transport ability. Journal of Materials Chemistry C, 2017, 5, 5199-5206.	2.7	24
205	Organostannane-free polycondensation and eco-friendly processing strategy for the design of semiconducting polymers in transistors. Materials Horizons, 2020, 7, 1955-1970.	6.4	24
206	High-performance near-infrared polymeric phototransistors realized by combining cross-linked polymeric semiconductors and bulk heterojunction bilayer structures. Applied Materials Today, 2021, 22, 100899.	2.3	24
207	Triple-Probe DNA Framework-Based Transistor for SARS-CoV-2 10-in-1 Pooled Testing. Nano Letters, 2022, 22, 3307-3316.	4.5	24
208	High performance field-effect transistors made of a multiwall CNx/C nanotube intramolecular junction. Applied Physics Letters, 2003, 83, 4824-4826.	1.5	23
209	Solution-processable π-conjugated dendrimers with hole-transporting, electroluminescent and fluorescent pattern properties. Journal of Materials Chemistry, 2011, 21, 14663.	6.7	23
210	Nearâ€Equilibrium Growth of Chemically Stable Covalent Organic Framework/Graphene Oxide Hybrid Materials for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
211	Pillar-shaped structures and patterns of three-dimensional carbon nanotube alignments. Chemical Communications, 2001, , 751-752.	2.2	21
212	Synthesis and characterization of a new conjugated polymer containing cyano substituents for light-emitting diodes. Journal of Materials Chemistry, 2001, 11, 1327-1331.	6.7	21
213	Copolyfluorenes containing bridged triphenylamine or triphenylamine: Synthesis, characterization, and optoelectronic properties. Journal of Polymer Science Part A, 2009, 47, 3651-3661.	2.5	21
214	Novel benzo[c][1,2,5]oxadiazole-naphthalenediimide based copolymer for high-performance air-stable n-type field-effect transistors exhibiting high electron mobility of 2.43 cm ² V ^{â~1} s ^{â~1a€‰} . Journal of Materials Chemistry C, 2017, 5, 2892-2898.	2.7	21
215	n-Type organic light-emitting transistors with high mobility and improved air stability. Journal of Materials Chemistry C, 2018, 6, 535-540.	2.7	21
216	Organic field-effect transistors based on tetrathiafulvalene derivatives. Pure and Applied Chemistry, 2008, 80, 2405-2423.	0.9	20

#	Article	IF	CITATIONS
217	Enhancing the organic thin-film transistor performance of diketopyrrolopyrrole–benzodithiophene copolymers via the modification of both conjugated backbone and side chain. Polymer Chemistry, 2015, 6, 5369-5375.	1.9	20
218	Thiadiazoloquinoxaline-Fused Acenaphthenequinone imide: A Highly Electron-Withdrawing Acceptor for Ambipolar Semiconducting Polymers with Strong Near-Infrared Absorption. Macromolecules, 2021, 54, 3120-3129.	2.2	20
219	Synthesis and Device Integration of Carbon Nanotube/Silica Coreâ ⁻ Shell Nanowires. Journal of Physical Chemistry C, 2007, 111, 7661-7665.	1.5	19
220	Perylene diimide copolymers with dithienothiophene and dithienopyrrole: Use in nâ€channel and ambipolar fieldâ€effect transistors. Journal of Polymer Science Part A, 2013, 51, 1550-1558.	2.5	19
221	Low Bandgap Donor-Acceptor π-Conjugated Polymers From Diarylcyclopentadienone-Fused Naphthalimides. Frontiers in Chemistry, 2019, 7, 362.	1.8	19
222	Studying the adsorption mechanisms of nanoplastics on covalent organic frameworks via molecular dynamics simulations. Journal of Hazardous Materials, 2022, 421, 126796.	6.5	19
223	A Selfâ€Assembled 3D Penetrating Nanonetwork for Highâ€Performance Intrinsically Stretchable Polymer Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2201844.	11.1	19
224	Polymer gate dielectrics with self-assembled monolayers forÂhigh-mobility organic thin-film transistors based on copper phthalocyanine. Applied Physics A: Materials Science and Processing, 2009, 95, 777-780.	1.1	18
225	A polythiophene derivative with octyl diphenylamine-vinylene side chains: synthesis and its applications in field-effect transistors and solar cells. Polymer Chemistry, 2010, 1, 678.	1.9	18
226	High-mobility, air stable bottom-contact n-channel thin film transistors based on ⟨i⟩N,N⟨ i⟩′-ditridecyl perylene diimide. Applied Physics Letters, 2013, 103, .	1.5	18
227	Synthesis and characterization of phenanthrocarbazole–diketopyrrolopyrrole copolymer for highâ€performance fieldâ€effect transistors. Journal of Polymer Science Part A, 2013, 51, 2208-2215.	2.5	18
228	Tailoring graphene layer-to-layer growth. Nanotechnology, 2017, 28, 265101.	1.3	18
229	Recent progress in stretchable organic field-effect transistors. Science China Technological Sciences, 2019, 62, 1255-1276.	2.0	18
230	Methoxylation of quinoidal bithiophene as a single regioisomer building block for narrow-bandgap conjugated polymers and high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 15168-15174.	2.7	18
231	Synthesis and properties of new orange red light-emitting hyperbranched and linear polymers derived from 3,5-dicyano-2,4,6-tristyrylpyridine. Journal of Polymer Science Part A, 2005, 43, 493-504.	2.5	17
232	Production of graphene nanospheres by annealing of graphene oxide in solution. Nano Research, 2011, 4, 705-711.	5.8	17
233	Ultrahigh density modulation of aligned single-walled carbon nanotube arrays. Nano Research, 2011, 4, 931-937.	5.8	17
234	Ultrafast Growth of Thin Hexagonal and Pyramidal Molybdenum Nitride Crystals and Films. , 2019, 1, 383-388.		17

#	Article	IF	CITATIONS
235	Fabrication and characterization of molecular scale field-effect transistors. Journal of Materials Chemistry, 2010, 20, 2305.	6.7	16
236	Bottomâ€Upâ€Etchingâ€Mediated Synthesis of Largeâ€Scale Pure Monolayer Graphene on Cyclicâ€Polishingâ€Annealed Cu(111). Advanced Materials, 2022, 34, e2108608.	11,1	16
237	Synthesis and properties of new poly(terfluorene) derivatives containing spirobifluorene and electron transport groups for stable blue electroluminescence. Journal of Polymer Science Part A, 2005, 43, 4517-4529.	2.5	15
238	N-Alkylation <i>vs</i> O-Alkylation: Influence on the Performance of a Polymeric Field-Effect Transistors Based on a Tetracyclic Lactam Building Block. Macromolecules, 2017, 50, 8497-8504.	2.2	15
239	Substrate-Induced Synthesis of Nitrogen-Doped Holey Graphene Nanocapsules for Advanced Metal-Free Bifunctional Electrocatalysts. Particle and Particle Systems Characterization, 2017, 34, 1600207.	1.2	15
240	A sulfur-containing hetero-octulene: synthesis, host–guest properties, and transistor applications. Chemical Communications, 2020, 56, 9990-9993.	2.2	15
241	Catalyst-Free Growth of Two-Dimensional BC _{<i>x</i>} N Materials on Dielectrics by Temperature-Dependent Plasma-Enhanced Chemical Vapor Deposition. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33113-33120.	4.0	15
242	Theoretical Study of Chemical Vapor Deposition Synthesis of Graphene and Beyond: Challenges and Perspectives. Journal of Physical Chemistry Letters, 2021, 12, 7942-7963.	2.1	15
243	A cyclopenta-fused dibenzo[<i>b</i> , <i>d</i>]thiophene- <i>co</i> -phenanthrene macrocyclic tetraradicaloid. Chemical Science, 2021, 12, 3952-3957.	3.7	15
244	Aldol Polymerization to Construct Half-Fused Semiconducting Polymers. Macromolecules, 2021, 54, 10312-10320.	2.2	15
245	Self-Expanding Molten Salt-Driven Growth of Patterned Transition-Metal Dichalcogenide Crystals. Journal of the American Chemical Society, 2022, 144, 8746-8755.	6.6	15
246	A thriving decade: rational design, green synthesis, and cutting-edge applications of isoindigo-based conjugated polymers in organic field-effect transistors. Science China Chemistry, 2022, 65, 1225-1264.	4.2	15
247	Preparation and electrical conductivity of Langmuir-Blodgett films of poly(3-alkylthiophene)s. Journal of Applied Polymer Science, 1998, 69, 1-6.	1.3	14
248	High performance polymer fieldâ€effect transistors based on polythiophene derivative with conjugated side chain. Journal of Polymer Science Part A, 2009, 47, 5304-5312.	2.5	14
249	Nano-Subsidence-Assisted Precise Integration of Patterned Two-Dimensional Materials for High-Performance Photodetector Arrays. ACS Nano, 2019, 13, 2654-2662.	7.3	14
250	Title is missing!. Journal of Materials Chemistry, 2001, 11, 2971-2973.	6.7	13
251	Electrochemistry and Electrogenerated Chemiluminescence of Quinoxaline Derivatives. Journal of Physical Chemistry C, 2008, 112, 20027-20032.	1.5	13
252	Tuning reaction processes for the synthesis of micron and nanometer sized, single crystalline lamellae of copper 7,7,8,8-tetracyano-p-quinodimethane (Phase II) with large area. Nano Research, 2009, 2, 630-637.	5.8	13

#	Article	IF	CITATIONS
253	Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity. Nano Research, 2009, 2, 865.	5.8	13
254	An isoindigo-bithiazole-based acceptor-acceptor copolymer for balanced ambipolar organic thin-film transistors. Science China Chemistry, 2016, 59, 679-683.	4.2	13
255	Distinctive Performance of Terahertz Photodetection Driven by Chargeâ€Densityâ€Wave Order in CVDâ€Grown Tantalum Diselenide. Advanced Functional Materials, 2019, 29, 1905057.	7.8	13
256	Low temperature growth of clean single layer hexagonal boron nitride flakes and film for graphene-based field-effect transistors. Science China Materials, 2019, 62, 1218-1225.	3.5	13
257	Bis-acenaphthoquinone diimides with high electron deficiency and good coplanar conformation. Chemical Communications, 2021, 57, 7822-7825.	2.2	13
258	Rheological Behavior of Spinning Dope of Multiwalled Carbon Nanotube/Polyacrylonitrile Composites. Macromolecular Symposia, 2004, 216, 189-194.	0.4	12
259	Organozinc Compounds as Effective Dielectric Modification Layers for Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2012, 22, 4139-4148.	7.8	12
260	Naphthodithieno [3,2-b] thiophene-based semiconductors: synthesis, characterization, and device performance of field-effect transistors. Organic Chemistry Frontiers, 2014, 1, 333-337.	2.3	12
261	Graphene–Silicon Layered Structures on Singleâ€Crystalline Ir(111) Thin Films. Advanced Materials Interfaces, 2015, 2, 1400543.	1.9	12
262	Electrochemical Synthesis of Large Area Twoâ€Dimensional Metal–Organic Framework Films on Copper Anodes. Angewandte Chemie, 2021, 133, 2923-2927.	1.6	12
263	Organic photodiodes for near-infrared light detection. Semiconductor Science and Technology, 2020, 35, 114001.	1.0	12
264	Ultra-Fast Synthesis of Single-Crystalline Three-Dimensional Covalent Organic Frameworks and Their Applications in Polarized Optics. Chemistry of Materials, 2022, 34, 2886-2895.	3.2	12
265	Linking polythiophene chains with vinyleneâ€bridges: A way to improve charge transport in polymer fieldâ€effect transistors. Journal of Polymer Science Part A, 2009, 47, 1381-1392.	2.5	11
266	Synthesis and characterization of fullerene derivatives with perfluoroalkyl groups. Journal of Materials Chemistry, 2009, 19, 3258.	6.7	11
267	The design and synthesis of fused thiophenes and their applications in organic field-effect transistors. Science China Chemistry, 2010, 53, 779-791.	4.2	11
268	New Carbazoleâ€Based Hyperbranched Conjugated Polymer with Good Holeâ€Transporting Properties. Macromolecular Chemistry and Physics, 2010, 211, 1820-1825.	1.1	11
269	Crystal Engineering of Angular-Shaped Heteroarenes Based on Cyclopenta[<i>b</i>]thiopyran for Controlling the Charge Carrier Mobility. Journal of the American Chemical Society, 2021, 143, 11088-11101.	6.6	11
270	Stable Diarylamine-Substituted Tris(2,4,6-trichlorophenyl)methyl Radicals: One-Step Synthesis, Near-Infrared Emission, and Redox Chemistry. CCS Chemistry, 2022, 4, 3190-3203.	4.6	11

#	Article	IF	Citations
271	Benzothieno [2,3-b] thiophene semiconductors: synthesis, characterization and applications in organic field-effect transistors. Journal of Materials Chemistry C, 2014, 2, 8804-8810.	2.7	10
272	Monolayer Twoâ€dimensional Molecular Crystals for an Ultrasensitive OFETâ€based Chemical Sensor. Angewandte Chemie, 2020, 132, 4410-4414.	1.6	10
273	Advancing conjugated polymers into nanometer-scale devices. Pure and Applied Chemistry, 2006, 78, 1803-1822.	0.9	9
274	Synthesis and properties of a series of quinoxaline-based copolymers: an example to understand the effect of the structure of the mainchain and sidechain on the charge transport ability of the polymers. Materials Chemistry Frontiers, 2017, 1, 2085-2093.	3.2	9
275	One-pot homopolymerization of thiophene-fused isoindigo for ambient-stable ambipolar organic field-effect transistors. RSC Advances, 2017, 7, 25009-25018.	1.7	8
276	Photosensors: A Retinaâ€Like Dual Band Organic Photosensor Array for Filterâ€Free Nearâ€Infraredâ€toâ€Memory Operations (Adv. Mater. 32/2017). Advanced Materials, 2017, 29, .	11.1	8
277	A two-dimensional cross-linked polythiophene network. Journal of Materials Chemistry C, 2019, 7, 9362-9368.	2.7	8
278	Graphene Fieldâ€Effect Transistors on Hexagonalâ€Boron Nitride for Enhanced Interfacial Thermal Dissipation. Advanced Electronic Materials, 2020, 6, 2000059.	2.6	8
279	Organic Semiconductors for Room-Temperature Spin Valves. , 2022, 4, 805-814.		8
280	Engineering of Chemical Vapor Deposition Graphene Layers: Growth, Characterization, and Properties. Advanced Functional Materials, 2022, 32, .	7.8	8
281	Molecular Packing and Charge Transport Behaviors of Semiconducting Polymers Over a Wide Temperature Range. Advanced Functional Materials, 2022, 32, .	7.8	8
282	Polymer light-emitting electrochemical cell based on a novel poly(aryleneethynylene) consisting of ethynylfluorene and tetraphenyldiaminobiphenyl units. Polymers for Advanced Technologies, 2004, 15, 70-74.	1.6	7
283	Anisotropic Chargeâ€Carrier Transport in Highâ€Mobility Donor–Acceptor Conjugated Polymer Semiconductor Films. Chemistry - an Asian Journal, 2016, 11, 2725-2729.	1.7	7
284	Olefin-linked covalent organic frameworks with twisted tertiary amine knots for enhanced ultraviolet detection. Chinese Chemical Letters, 2022, 33, 2621-2624.	4.8	7
285	Regulation of the backbone structure and optoelectrical properties of bis-pyridal [2,1,3] thiadiazole-based ambipolar semiconducting polymers <i>via</i> a fluorination strategy. Journal of Materials Chemistry C, 2021, 9, 15083-15094.	2.7	7
286	Optical-limiting properties of poly(arylene ethynylenes) containing thiophene ring. Journal of Applied Polymer Science, 2004, 93, 131-135.	1.3	6
287	Bitrialkylsilylethynyl thienoacenes: synthesis, molecular conformation and crystal packing, and their field-effect properties. Journal of Materials Chemistry C, 2013, 1, 6403.	2.7	6
288	Neuromorphic Devices: A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visual-Perception System (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870349.	11.1	6

#	Article	IF	CITATIONS
289	Visualization of Crystallographic Orientation and Twist Angles in Two-Dimensional Crystals with an Optical Microscope. Nano Letters, 2020, 20, 6059-6066.	4.5	6
290	Strain-Sensitive Fluorescence from Two-Dimensional Organic Crystal. Journal of Physical Chemistry Letters, 2020, 11, 1909-1914.	2.1	6
291	Short-wavelength ultraviolet dosimeters based on DNA nanostructure-modified graphene field-effect transistors. Chemical Communications, 2021, 57, 5071-5074.	2.2	6
292	Twoâ€Dimensional Metalâ€Organic Framework Film for Realizing Optoelectronic Synaptic Plasticity. Angewandte Chemie, 2021, 133, 17580-17585.	1.6	6
293	Nonchlorinated Solubility Enhanced by Lipophilicity: An Effective Strategy for Environmentally Benign Processing of Rigidly Regular nâ€type Polymeric Semiconductors. Advanced Electronic Materials, 2021, 7, 2100526.	2.6	6
294	Multifunctional neurosynaptic devices for human perception systems. Journal of Semiconductors, 2022, 43, 051201.	2.0	6
295	BN-Embedded V-Shaped Polycyclic Aromatic Hydrocarbons Exhibiting Tunable Molecular Packing and Supramolecular Interactions. Organic Letters, 0, , .	2.4	6
296	An Organic Field-Effect-Transistor Based on Langmuir-Blodgett Films of a New Asymmetrically Substituted Phthalocyanine, 1,8-Naphthaimide-Tri-Tert-Butylphthalocyanine. Molecular Crystals and Liquid Crystals, 1999, 337, 511-514.	0.3	5
297	Coordination induced monolayer formation and fabrication of a novel conductive Langmuir–Schaefer film of benzimidazole-containing Schiff bases without a substituted alkyl chain. Journal of Materials Chemistry, 2001, 11, 1924-1927.	6.7	5
298	Two-dimensional copolymers with D–A type side chains for organic thin-film transistors: Synthesis and properties. Polymer Chemistry, 2011, 2, 2842.	1.9	5
299	A structurally ordered thiophene-thiazole copolymer for organic thin-film transistors. Science China Chemistry, 2012, 55, 760-765.	4.2	5
300	Investigation of Abnormal Longâ€Wavelength Fluorescence Emissions Occurring in Binary Organic Nanoparticle Films. Particle and Particle Systems Characterization, 2015, 32, 962-969.	1.2	5
301	A nonchlorinated solvent-processed polymer semiconductor for high-performance ambipolar transistors. National Science Review, 2022, 9, nwab145.	4.6	5
302	Synthesis and Characterization of a 2,4,6â€Ţri(2â€ŧhienyl)pyridineâ€Based Conjugated Polymer for OFET Applications. Macromolecular Chemistry and Physics, 2012, 213, 917-923.	1.1	4
303	Graphene: Twoâ€Stage Metalâ€Catalystâ€Free Growth of Highâ€Quality Polycrystalline Graphene Films on Silicon Nitride Substrates (Adv. Mater. 7/2013). Advanced Materials, 2013, 25, 938-938.	11.1	4
304	Innerâ€Evaporator Modification of Lowâ€Cost Metal Electrodes of Organic Fieldâ€Effect Transistors by 2D Polyporphyrin. Advanced Electronic Materials, 2019, 5, 1900447.	2.6	4
305	Synthesis of Two-Dimensional C–C Bonded Truxene-Based Covalent Organic Frameworks by Irreversible Brønsted Acid-Catalyzed Aldol Cyclotrimerization. Research, 2021, 2021, 9790705.	2.8	4
306	The Impact of Benzothiadiazole on the Optoelectronic Performance of Polymer/PC ₇₁ BM Blend Films and Their Application in NIR Phototransistors. Advanced Electronic Materials, 0, , 2101297.	2.6	4

#	Article	IF	CITATIONS
307	Mechanisms of the epitaxial growth of two-dimensional polycrystals. Npj Computational Materials, 2022, 8, .	3.5	4
308	Electron structures and non-linear optical properties oftertbutyl-nitro-phthalocyanines. Science Bulletin, 1999, 44, 694-698.	1.7	3
309	Synthesis and characterization of novel phenyl-substituted poly(p-phenylene vinylene) derivatives. Journal of Applied Polymer Science, 2005, 96, 1259-1266.	1.3	3
310	Graphene: Controlled Synthesis of Largeâ€Scale, Uniform, Vertically Standing Graphene for Highâ€Performance Field Emitters (Adv. Mater. 2/2013). Advanced Materials, 2013, 25, 292-292.	11.1	3
311	Fieldâ€Effect Transistors: Monolayer Hexagonal Boron Nitride Films with Large Domain Size and Clean Interface for Enhancing the Mobility of Grapheneâ€Based Fieldâ€Effect Transistors (Adv. Mater. 10/2014). Advanced Materials, 2014, 26, 1474-1474.	11.1	3
312	Organic Electronics: "Regioselective Deposition―Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards All-Solution-Processed, High-Performance,		

#	Article	IF	Citations
325	Multilayer Organic Light-Emitting Diodes with Phthalocyanine Film as Hole-Injection Layer. Molecular Crystals and Liquid Crystals, 1999, 337, 93-96.	0.3	1
326	Progresses in organic field-effect transistors and molecular electronics. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 357-363.	0.4	1
327	Unusual tubular organization with crystal stacks from a new cyclic thiophene compound,. CrystEngComm, 2009, 11, 2288.	1.3	1
328	Multilayer Graphene-Coated Atomic Force Microscopy Tips for Molecular Junctions (Adv. Mater.) Tj ETQq0 0 0 rg	BT/Oyerlo	ock ₁ 10 Tf 50 6
329	Transistors: Inkjet Printing Shortâ€Channel Polymer Transistors with Highâ€Performance and Ultrahigh Photoresponsivity (Adv. Mater. 27/2014). Advanced Materials, 2014, 26, 4752-4752.	11.1	1
330	Graphene: Near-Equilibrium Chemical Vapor Deposition of High-Quality Single-Crystal Graphene Directly on Various Dielectric Substrates (Adv. Mater. 9/2014). Advanced Materials, 2014, 26, 1471-1471.	11.1	1
331	Surface Catalytic Modification of Conjugated Polymer on Low ost Bottom Contact for Improved Injection Efficiency of Organic Transistors. Advanced Electronic Materials, 2019, 5, 1900028.	2.6	1
332	2D Materials: Epitaxial Growth of hâ€BN on Templates of Various Dimensionalities in hâ€BN–Graphene Material Systems (Adv. Mater. 12/2019). Advanced Materials, 2019, 31, 1970088.	11,1	1
333	Constrain Effect of Charge Traps in Organic Field-Effect Transistors with Ferroelectric Polymer as a Dielectric Interfacial Layer. ACS Applied Materials & Interfaces, 2022, , .	4.0	1
334	Study on LB Films of Novel Fullerene Derivatives. Molecular Crystals and Liquid Crystals, 1997, 294, 7-10.	0.3	0
335	Second Harmonic Generation in Langmuir-Blodgett Films of a Novel Phenylhydrazone Dye. Molecular Crystals and Liquid Crystals, 1999, 337, 425-428.	0.3	0
336	Inside Front Cover: The Intramolecular Junctions of Carbon Nanotubes (Adv. Mater. 15/2008). Advanced Materials, 2008, 20, NA-NA.	11.1	0
337	Organic FETs: Functional Organic Field-Effect Transistors (Adv. Mater. 40/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	0
338	Threshold voltage control of copper phthalocyanine based organic field-effect transistors with a poly (N-vinylcarbazole) buffer layer. , 2010, , .		0
339	Macromol. Chem. Phys. 5/2011. Macromolecular Chemistry and Physics, 2011, 212, .	1.1	0
340	Organic Thin-Film Transistors: Interfacial Heterogeneity of Surface Energy in Organic Field-Effect Transistors (Adv. Mater. 8/2011). Advanced Materials, 2011, 23, 1008-1008.	11.1	0
341	Graphene Sheets: Gramâ€6cale Synthesis of Graphene Sheets by a Catalytic Arcâ€Discharge Method (Small) Tj E	TQq1 1 0.	784314 rgBT
342	Nanoscale Materials: A General Approach for Fast Detection of Charge Carrier Type and Conductivity Difference in Nanoscale Materials (Adv. Mater. 48/2013). Advanced Materials, 2013, 25, 6916-6916.	11.1	0

#	Article	IF	Citations
343	Graphene: Layerâ€Stacking Growth and Electrical Transport of Hierarchical Graphene Architectures (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3355-3355.	11.1	0
344	Field-Effect Transistors: Heteroatom Substituted Organic/Polymeric Semiconductors and their Applications in Field-Effect Transistors (Adv. Mater. 40/2014). Advanced Materials, 2014, 26, 6802-6802.	11.1	0
345	Special topic on molecular functional materials and applications. Science China Chemistry, 2016, 59, 651-652.	4.2	0
346	Organic Field-Effect Transistors: Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar Transistors and High-Gain Inverters (Adv. Mater. 32/2018). Advanced Materials, 2018, 30, 1870241.	11.1	0
347	Highly sensitive solid chemical sensor for veterinary drugs based on the synergism between hydrogen bonds and low-dimensional polymer networks. Journal of Materials Chemistry C, 0, , .	2.7	0
348	Ultrahighâ€Performance Optoelectronic Skin Based on Intrinsically Stretchable Perovskiteâ€Polymer Heterojunction Transistors (Adv. Mater. 4/2022). Advanced Materials, 2022, 34, .	11.1	0
349	Frontispiz: Nearâ€Equilibrium Growth of Chemically Stable Covalent Organic Framework/Graphene Oxide Hybrid Materials for the Hydrogen Evolution Reaction. Angewandte Chemie, 2022, 134, .	1.6	0
350	Vapor-solid interfacial reaction and polymerization for wafer-scale uniform and ultrathin two-dimensional organic films. Science China Materials, $0, 1$.	3.5	0
351	Frontispiece: Nearâ€Equilibrium Growth of Chemically Stable Covalent Organic Framework/Graphene Oxide Hybrid Materials for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0
352	Bottomâ€Upâ€Etchingâ€Mediated Synthesis of Largeâ€Scale Pure Monolayer Graphene on Cyclicâ€Polishingâ€Annealed Cu(111) (Adv. Mater. 8/2022). Advanced Materials, 2022, 34, .	11.1	0