Leonid L Fershtat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2492023/publications.pdf Version: 2024-02-01

LEONID L FEDSHTAT

#	Article	IF	CITATIONS
1	1,2,5â€Oxadiazoleâ€Based Highâ€Energyâ€Density Materials: Synthesis and Performance. ChemPlusChem, 2020, 85, 13-42.	1.3	116
2	Progress in the chemistry of nitrogen-, oxygen- and sulfur-containing heterocyclic systems. Russian Chemical Reviews, 2020, 89, 55-124.	2.5	100
3	Prospective Symbiosis of Green Chemistry and Energetic Materials. ChemSusChem, 2017, 10, 3914-3946.	3.6	87
4	Molecular Hybridization Tools in the Development of Furoxanâ€Based NOâ€Donor Prodrugs. ChemMedChem, 2017, 12, 622-638.	1.6	81
5	Advances in the synthesis of non-annelated polynuclear heterocyclic systems comprising the 1,2,5-oxadiazole ring. Russian Chemical Reviews, 2016, 85, 1097-1145.	2.5	70
6	Sensitivity of energetic materials: Evidence of thermodynamic factor on a large array of CHNOFCl compounds. Chemical Engineering Journal, 2021, 421, 129804.	6.6	69
7	IFITM1 promotes the metastasis of human colorectal cancer via CAV-1. Cancer Letters, 2015, 368, 135-143.	3.2	67
8	Advanced energetic materials: novel strategies and versatile applications. Mendeleev Communications, 2021, 31, 731-749.	0.6	67
9	Assembly of Tetrazolylfuroxan Organic Salts: Multipurpose Green Energetic Materials with High Enthalpies of Formation and Excellent Detonation Performance. Chemistry - A European Journal, 2019, 25, 4225-4233.	1.7	60
10	An efficient access to (1H-tetrazol-5-yl)furoxan ammonium salts via a two-step dehydration/[3+2]-cycloaddition strategy. Tetrahedron, 2015, 71, 6764-6775.	1.0	59
11	Efficient assembly of mono- and bis(1,2,4-oxadiazol-3-yl)furoxan scaffolds via tandem reactions of furoxanylamidoximes. RSC Advances, 2015, 5, 47248-47260.	1.7	51
12	Assembly of Nitrofurazan and Nitrofuroxan Frameworks for Highâ€Performance Energetic Materials. ChemPlusChem, 2017, 82, 1315-1319.	1.3	51
13	Design of hybrid heterocyclic systems with a furoxanylpyridine core via tandem hetero-Diels–Alder/retro-Diels–Alder reactions of (1,2,4-triazin-3-yl)furoxans. RSC Advances, 2016, 6, 31526-31539.	1.7	42
14	High-energy hydroxytetrazoles: Design, synthesis and performance. Energetic Materials Frontiers, 2021, 2, 3-13.	1.3	40
15	Recent advances in the synthesis and functionalization of 1,2,5-oxadiazole 2-oxides. Tetrahedron Letters, 2018, 59, 2317-2326.	0.7	39
16	Pushing the Energy-Sensitivity Balance with High-Performance Bifuroxans. ACS Applied Energy Materials, 2020, 3, 7764-7771.	2.5	39
17	Dinitrogen Trioxide-Mediated Domino Process for the Regioselective Construction of 4-Nitrofuroxans from Acrylic Acids. Heteroatom Chemistry, 2014, 25, 226-237.	0.4	37
18	Regioselective synthesis of bifuroxanyl systems with the 3-nitrobifuroxanyl core via a one-pot acylation/nitrosation/cyclization cascade. Tetrahedron Letters, 2016, 57, 4268-4272.	0.7	37

LEONID L FERSHTAT

#	Article	IF	CITATIONS
19	Synthesis of hetarylsulfanyl- and hetaryloxyfuroxans by nucleophilic substitution of nitro group in nitrofuroxans with heterocyclic thiol and hydroxy derivatives*. Chemistry of Heterocyclic Compounds, 2015, 51, 176-186.	0.6	34
20	Ionic liquid-promoted [3+2]-cycloaddition reactions of nitroformonitrile oxide generated by the cycloreversion of dinitrofuroxan. Tetrahedron Letters, 2014, 55, 2398-2400.	0.7	31
21	Design of hetarylthiofuroxans by nucleophilic substitution of NO2 group in nitrofuroxans. Mendeleev Communications, 2015, 25, 36-38.	0.6	30
22	lonic liquid-mediated synthesis of (1H-1,2,3-triazol-1-yl)furoxans by [3 + 2] cycloaddition of azidofuroxans to acetylenes. Mendeleev Communications, 2015, 25, 257-259.	0.6	29
23	Metathesis of azomethine imines in the reaction of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes with carbonyl compounds. Mendeleev Communications, 2012, 22, 32-34.	0.6	27
24	An effective synthesis of (1Е1,2,4-triazol-3-yl)furoxans. Chemistry of Heterocyclic Compounds, 2015, 51, 754-759.	0.6	27
25	New insight into the antiaggregant activity of furoxans. Mendeleev Communications, 2016, 26, 513-515.	0.6	26
26	Design and Synthesis of Nitrogenâ€Rich Azoâ€Bridged Furoxanylazoles as Highâ€Performance Energetic Materials. Chemistry - A European Journal, 2021, 27, 14628-14637.	1.7	25
27	Antiaggregant activity of water-soluble furoxans. Mendeleev Communications, 2018, 28, 49-51.	0.6	24
28	Straightforward Access to the Nitric Oxide Donor Azasydnone Scaffold by Cascade Reactions of Amines. Chemistry - A European Journal, 2019, 25, 14284-14289.	1.7	23
29	Side-chain prototropic tautomerism of 4-hydroxyfuroxans in methylation reactions. Tetrahedron Letters, 2016, 57, 5685-5689.	0.7	22
30	Synthesis, structural characterization and cytotoxic activity of heterocyclic compounds containing the furoxan ring. Arkivoc, 2017, 2017, 250-268.	0.3	22
31	Recent Advances in the Synthesis and Biomedical Applications of Heterocyclic NO-Donors. Molecules, 2021, 26, 5705.	1.7	22
32	Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives. Molecules, 2020, 25, 5836.	1.7	20
33	New Method for the Synthesis and Reactivity of (5â€Râ€1,3,4â€Oxadiazolâ€2â€yl)furoxans. Journal of Heterocyclic Chemistry, 2016, 53, 102-108.	1.4	19
34	Tandem Condensation/Rearrangement Reaction of 2â€Aminohetarene <i>N</i> â€Oxides for the Synthesis of Hetaryl Carbamates. Advanced Synthesis and Catalysis, 2018, 360, 3157-3163.	2.1	19
35	Five-Membered Hetarene N-Oxides: Recent Advances in Synthesis and Reactivity. Synthesis, 2021, 53, 3673-3682.	1.2	17
36	New hybrid furoxan structures with antiaggregant activity. Mendeleev Communications, 2018, 28, 595-597.	0.6	16

LEONID L FERSHTAT

#	Article	IF	CITATIONS
37	Crystal Solvates of Energetic 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane Molecule with [bmim]-Based Ionic Liquids. Crystal Growth and Design, 2019, 19, 3660-3669.	1.4	15
38	N-Oxide-Controlled Chemoselective Reduction of Nitrofuroxans. Synthesis, 2019, 51, 747-756.	1.2	14
39	Nitrogen-rich metal-free salts: a new look at the 5-(trinitromethyl)tetrazolate anion as an energetic moiety. Dalton Transactions, 2021, 50, 13778-13785.	1.6	14
40	Versatile approach to heteroarylfuroxan derivatives from oximinofuroxans via a one-pot, nitration/thermolysis/[3+2]-cycloaddition cascade. Tetrahedron Letters, 2017, 58, 3993-3997.	0.7	13
41	Effective synthesis of 6-substituted 7H-tetrazolo[5,1-b][1,3,4]thiadiazines via a one-pot condensation/nitrosation/azide-tetrazole tautomerism reaction sequence. Tetrahedron Letters, 2017, 58, 3998-4002.	0.7	13
42	Synthesis and reactivity of aminofuroxans. Chemistry of Heterocyclic Compounds, 2019, 55, 1143-1164.	0.6	13
43	Novel Arylazoâ€1,2,5â€oxadiazole Photoswitches: Synthesis, Photoisomerization and Nitric Oxide Releasing Properties. ChemPhotoChem, 2020, 4, 5346-5354.	1.5	13
44	Sustainable Synthesis of Polynitroesters in the Freon Medium and their <i>in Vitro</i> Evaluation as Potential Nitric Oxide Donors. ACS Sustainable Chemistry and Engineering, 2018, 6, 2535-2540.	3.2	12
45	Eco-friendly N–N coupling of aminofuroxans into azofuroxans under the action of electrogenerated hypohalites. Mendeleev Communications, 2018, 28, 518-520.	0.6	12
46	Regioselective synthesis, structural diversification and cytotoxic activity of (thiazol-4-yl)furoxans. Mendeleev Communications, 2018, 28, 623-625.	0.6	12
47	Renaissance of 1,2,5â€Oxadiazolyl Diazonium Salts: Synthesis and Reactivity. European Journal of Organic Chemistry, 2019, 2019, 4248-4259.	1.2	12
48	Nitrodiaziridines: Unattainable yet, but Desired Energetic Materials. Journal of Physical Chemistry A, 2021, 125, 3920-3927.	1.1	12
49	Novel energetic oxadiazole assemblies. Mendeleev Communications, 2022, 32, 111-113.	0.6	12
50	Reaction of 1,2â€Ðialkyldiaziridines and 1,2,3â€Trialkyldiaziridines with Methyl Propiolate in Ionic Liquids and in Organic Solvents. Journal of Heterocyclic Chemistry, 2013, 50, 326-336.	1.4	11
51	Lewis acid-catalyzed Wolff cyclocondensation in the synthesis of (1H-1,2,3-triazolyl)furoxans. Arkivoc, 2017, 2017, 140-150.	0.3	10
52	Route to 1,2,4- and 1,2,5-oxadiazole ring assemblies via a one-pot condensation/oxidation protocol. Tetrahedron Letters, 2020, 61, 151678.	0.7	10
53	Design and synthesis of pyrazolo[3,4-d]pyridazine 5,6-dioxides as novel NO-donors. Mendeleev Communications, 2021, 31, 42-45.	0.6	10
54	Antiaggregant effects of (1,2,5â€oxadiazolyl)azasydnone ring assemblies as novel antiplatelet agents. Chemical Biology and Drug Design, 2022, 100, 1017-1024.	1.5	10

LEONID L FERSHTAT

#	Article	IF	CITATIONS
55	Hetarylfuroxans: cytotoxic effect and induction of apoptosis in chronic myeloid leukemia K562 cells. Russian Chemical Bulletin, 2019, 68, 158-162.	0.4	9
56	Diaziridine ring expansion in 6-aryl-1,5-diazabicyclo[3.1.0]hexanes upon reactions with activated olefins in ionic liquids. Russian Chemical Bulletin, 2010, 59, 1621-1630.	0.4	8
57	Dinitrofuroxan cycloreversion as a novel general approach for the synthesis of nitroazoles. Russian Chemical Bulletin, 2015, 64, 415-422.	0.4	8
58	Divergent Synthesis of Five-Membered Nitrogen Heterocycles via Cascade Reactions of 4-Arylfuroxans. Synthesis, 2020, 52, 2667-2678.	1.2	8
59	Effective synthesis of 7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines. Chemistry of Heterocyclic Compounds, 2018, 54, 669-672.	0.6	7
60	Synthesis of new pharmacologically oriented heterocyclic ensembles, [2-(1H-pyrazol-1-yl)thiazol-4-yl]furoxans. Mendeleev Communications, 2019, 29, 288-291.	0.6	7
61	The equilibrium molecular structure of 3-methyl-4-nitro- and 4-methyl-3-nitrofuroxans by gas-phase electron diffraction and coupled cluster calculations. Journal of Molecular Structure, 2020, 1222, 128856.	1.8	7
62	3,3′-(Diazene-1,2-diyl)bis[4-(nitroamino)-1,2,5-oxadiazole 2-oxide]. MolBank, 2018, 2018, M1003.	0.2	6
63	Direct Synthesis of <i>N</i> -(1,2,5-Oxadiazolyl)hydrazones through a Diazotization/Reduction/Condensation Cascade. Journal of Organic Chemistry, 2020, 85, 15466-15475.	1.7	6
64	Tandem Reactions of Thermolysis and [3+2] Cycloaddition in the Synthesis of 3-Hetaryl-4-Nitrofuroxans from 4-Nitrofuroxannitrolic Acid. Chemistry of Heterocyclic Compounds, 2020, 56, 607-610.	0.6	6
65	Two sides of thermal stability of energetic liquid: Vaporization and decomposition of 3-methylfuroxan. Journal of Molecular Liquids, 2021, 348, 118059.	2.3	6
66	Revisiting the Synthesis of Functionally Substituted 1,4-Dihydrobenzo[e][1,2,4]triazines. Molecules, 2022, 27, 2575.	1.7	5
67	First synthesis of 1,5-diazabicyclo[3.1.0]hexane complexes with cadmium salts. Russian Chemical Bulletin, 2009, 58, 1002-1006.	0.4	3
68	1,2,5-Oxadiazoles. , 2020, , 190-190.		3
69	Tandem acid-promoted intramolecular azide-hydrazone electrocyclization/hydrolysis approach for the synthesis of N-Aminotetrazoles. Tetrahedron, 2022, 103, 132563.	1.0	3
70	Ring Distortion Diversityâ€Oriented Approach to Fully Substituted Furoxans and Isoxazoles. Asian Journal of Organic Chemistry, 2021, 10, 2644-2653.	1.3	2
71	INTERPLAY OF THERMAL ANALYSIS AND PREDICTIVE ELECTRONIC STRUCTURE THEORY IN THE STUDY OF SOLID-STATE THERMOCHEMISTRY AND PHASE TRANSITIONS OF ENERGETIC MATERIALS. , 2019, , .		1
72	Lewis acid catalyzed condensation of 2-aminohetarene N-oxides with N,N-dimethylformamide dimethyl acetal. Chemistry of Heterocyclic Compounds, 2021, 57, 1130-1136.	0.6	1

#	Article	IF	CITATIONS
73	Synthesis of 1,4-dihydro-1,2,4-benzotriazin-4-yl radicals (microreview). Chemistry of Heterocyclic Compounds, 0, , .	0.6	1
74	Novel Arylazoâ€1,2,5â€oxadiazole Photoswitches: Synthesis, Photoisomerization and Nitric Oxide Releasing Properties. ChemPhotoChem, 2020, 4, 5321-5321.	1.5	0
75	Potassium (3-Methyl-2-oxido-1,2,5-oxadiazol-4-yl)dinitromethanide. MolBank, 2021, 2021, M1301.	0.2	0