Xiaohui Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2491921/publications.pdf

Version: 2024-02-01

304602 289141 1,680 42 22 40 citations h-index g-index papers 43 43 43 1959 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biologically Emulated Flexible Sensors With High Sensitivity and Low Hysteresis: Toward Electronic Skin to a Sense of Touch. Small, 2022, 18 , .	5.2	54
2	Highly sensitive and flexible three-dimensional force tactile sensor based on inverted pyramidal structure. Smart Materials and Structures, 2022, 31, 095013.	1.8	17
3	High-sensitivity crack-based flexible strain sensor with dual hydrogen bond-assisted structure for monitoring tiny human motions and writing behavior. Organic Electronics, 2021, 88, 105977.	1.4	11
4	Biomimetic flexible strain sensor with high linearity using double conducting layers. Composites Science and Technology, 2021, 213, 108908.	3.8	29
5	Regenerated Silk Fibroin-Modified Soft Graphene Aerogels for Supercapacitive Stress Sensors. Journal of the Electrochemical Society, 2021, 168, 117511.	1.3	9
6	Highly stable pressure sensor based on carbonized melamine sponge using fully wrapped conductive path for flexible electronic skin. Organic Electronics, 2020, 76, 105447.	1.4	34
7	Static and Dynamic Human Arm/Hand Gesture Capturing and Recognition via Multiinformation Fusion of Flexible Strain Sensors. IEEE Sensors Journal, 2020, 20, 6450-6459.	2.4	47
8	Highly sensitive capacitive flexible 3D-force tactile sensors for robotic grasping and manipulation. Journal Physics D: Applied Physics, 2020, 53, 445109.	1.3	35
9	Highly Flexible and Selfâ€Healable Zincâ€Ion Hybrid Supercapacitors Based on MWCNTsâ€RGO Fibers. Advanced Materials Technologies, 2020, 5, 2000268.	3.0	44
10	Integrated flexible piezoresistive pressure sensor based on CB/CNTs/SR composite with SR buffer layer for wide sensing range. Journal of Materials Science: Materials in Electronics, 2020, 31, 21557-21568.	1.1	7
11	Highly sensitive and stretchable strain sensors based on serpentine-shaped composite films for flexible electronic skin applications. Composites Science and Technology, 2020, 197, 108215.	3.8	73
12	Superelastic and large-range pressure sensor with hollow-sphere architectures for wearable electronic skin. Smart Materials and Structures, 2020, 29, 045014.	1.8	12
13	Highly stretchable strain sensor with wide linear region via hydrogen bond-assisted dual-mode cooperative conductive network for gait detection. Composites Science and Technology, 2020, 191, 108070.	3.8	17
14	Highly sensitive pressure sensor based on structurally modified tissue paper for human physiological activity monitoring. Journal of Applied Polymer Science, 2020, 137, 48973.	1.3	17
15	Real-time sitting behavior tracking and analysis for rectification of sitting habits by strain sensor-based flexible data bands. Measurement Science and Technology, 2020, 31, 055102.	1.4	11
16	MXeneâ€Reduced Graphene Oxide Aerogel for Aqueous Zincâ€lon Hybrid Supercapacitor with Ultralong Cycle Life. Advanced Electronic Materials, 2019, 5, 1900537.	2.6	259
17	VMD-based denoising methods for surface electromyography signals. Journal of Neural Engineering, 2019, 16, 056017.	1.8	25
18	Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin. ACS Applied Materials & District Sensors Interfaces, 2019, 11, 40716-40725.	4.0	173

#	Article	IF	Citations
19	A highly adhesive flexible strain sensor based on ultra-violet adhesive filled by graphene and carbon black for wearable monitoring. Composites Science and Technology, 2019, 182, 107771.	3.8	28
20	A low-voltage graphene/Ag-based phase transition-controlled force actuator. Composites Part B: Engineering, 2019, 174, 106912.	5.9	8
21	Highly stretchable, rapid-response strain sensor based on SWCNTs/CB nanocomposites coated on rubber/latex polymer for human motion tracking. Sensor Review, 2019, 39, 233-245.	1.0	13
22	Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin. Smart Materials and Structures, 2019, 28, 035004.	1.8	46
23	Fully flexible strain sensor from core-spun elastic threads with integrated electrode and sensing cell based on conductive nanocomposite. Composites Science and Technology, 2018, 159, 42-49.	3.8	47
24	A dual-mode proximity sensor with combination of inductive and capacitive sensing units. Sensor Review, 2018, 38, 199-206.	1.0	14
25	Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions. Smart Materials and Structures, 2018, 27, 035013.	1.8	47
26	Electrical conductivity transformation mechanism of <scp>GNP</scp> s/ <scp>CB</scp> / <scp>SR</scp> nanocomposite foams. Journal of Applied Polymer Science, 2018, 135, 45996.	1.3	9
27	High-resolution flexible temperature sensor based graphite-filled polyethylene oxide and polyvinylidene fluoride composites for body temperature monitoring. Sensors and Actuators A: Physical, 2018, 278, 1-10.	2.0	60
28	Effects of the filler size on the electrical percolation threshold of carbon black–carbon nanotube–polymer composites. Journal of Applied Polymer Science, 2018, 135, 46517.	1.3	20
29	Resistive pressure sensor for high-sensitivity e-skin based on porous sponge dip-coated CB/MWCNTs/SR conductive composites. Materials Research Express, 2018, 5, 065701.	0.8	23
30	A flexible three-axial capacitive tactile sensor with multilayered dielectric for artificial skin applications. Microsystem Technologies, 2017, 23, 1847-1852.	1.2	41
31	Flexible and wearable 2.45 GHz CPWâ€fed antenna using inkjetâ€printing of silver nanoparticles on pet substrate. Microwave and Optical Technology Letters, 2017, 59, 204-208.	0.9	42
32	A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications. Review of Scientific Instruments, 2017, 88, 085005.	0.6	23
33	Flexible and reversibly deformable radio-frequency antenna based on stretchable SWCNTs/PANI/Lycra conductive fabric. Smart Materials and Structures, 2017, 26, 105036.	1.8	25
34	Highly flexible fabric strain sensor based on graphene nanoplatelet–polyaniline nanocomposites for human gesture recognition. Journal of Applied Polymer Science, 2017, 134, 45340.	1.3	75
35	Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition. Smart Materials and Structures, 2017, 26, 095017.	1.8	110
36	Materials and structure engineering in wearable monitor: Highly stretchable strain sensor developed by structured SWCNTs/CB networks. , 2017, , .		0

Хіаониі Сио

#	Article	IF	CITATION
37	Design and Research of Flexible Wearable Textile Antenna Based on GNPs/PANI/PDMS Composites for 2.45 GHz. Nanoscience and Nanotechnology Letters, 2017, 9, 476-480.	0.4	7
38	Fully Printed Flexible Coplanar Waveguide-Fed Antenna Based on Silver-Nanoparticles for Wearable Applications. Nanoscience and Nanotechnology Letters, 2017, 9, 433-437.	0.4	2
39	Flexible and Deformable Monopole Antenna Based on Silver Nanoparticles for Wearable Electronics. Nanoscience and Nanotechnology Letters, 2017, 9, 1632-1638.	0.4	9
40	A flexible touch-pressure sensor array with wireless transmission system for robotic skin. Review of Scientific Instruments, 2016, 87, 065007.	0.6	28
41	Capacitive wearable tactile sensor based on smart textile substrate with carbon black /silicone rubber composite dielectric. Measurement Science and Technology, 2016, 27, 045105.	1.4	114
42	Enhanced electrical conductivity and mechanical stability of flexible pressure-sensitive GNPs/CB/SR composites: Synergistic effects of GNPs and CB. Journal of Materials Research, 2015, 30, 3394-3402.	1.2	14