Kjetil Ask

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2491861/publications.pdf

Version: 2024-02-01

94 papers	5,099 citations	35 h-index	91712 69 g-index
106	106	106	7641 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis?. International Journal of Biochemistry and Cell Biology, 2008, 40, 362-382.	1.2	781
2	Circulating Fibrocytes Are an Indicator of Poor Prognosis in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 588-594.	2.5	486
3	TGF- \hat{l}^2 and <i>Smad3</i> Signaling Link Inflammation to Chronic Fibrogenesis. Journal of Immunology, 2005, 175, 5390-5395.	0.4	227
4	The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis. International Journal of Biochemistry and Cell Biology, 2015, 61, 45-52.	1.2	206
5	VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats. Journal of Clinical Investigation, 2009, 119, 1298-1311.	3.9	184
6	Stretch-induced Activation of Transforming Growth Factor-β ₁ in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 84-96.	2.5	165
7	TGF-Î ² , Smad3 and the process of progressive fibrosis. Biochemical Society Transactions, 2007, 35, 661-664.	1.6	161
8	Progressive pulmonary fibrosis is mediated by TGF-β isoform 1 but not TGF-β3. International Journal of Biochemistry and Cell Biology, 2008, 40, 484-495.	1.2	148
9	Connective Tissue Growth Factor Is Crucial to Inducing a Profibrotic Environment in "Fibrosis-Resistant―Balb/c Mouse Lungs. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 510-516.	1.4	142
10	Gene expression and <i>in situ</i> protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. European Respiratory Journal, 2020, 56, 2001123.	3.1	138
11	TACAN Is an Ion Channel Involved in Sensing Mechanical Pain. Cell, 2020, 180, 956-967.e17.	13.5	120
12	Cadherin- $11\hat{a}$ "mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF- \hat{l}^2 . Science Signaling, 2019, 12, .	1.6	113
13	Smad3 Signaling Involved in Pulmonary Fibrosis and Emphysema. Proceedings of the American Thoracic Society, 2006, 3, 696-702.	3.5	111
14	Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. ELife, 2018, 7, .	2.8	99
15	GRP78 and CHOP modulate macrophage apoptosis and the development of bleomycin-induced pulmonary fibrosis. Journal of Pathology, 2016, 239, 411-425.	2.1	96
16	The importance of interventional timing in the bleomycin model of pulmonary fibrosis. European Respiratory Journal, 2020, 55, 1901105.	3.1	82
17	Fibroblast growth factor-1 attenuates TGF- \hat{l}^21 -induced lung fibrosis. Journal of Pathology, 2016, 240, 197-210.	2.1	81
18	Targeting Genes for Treatment in Idiopathic Pulmonary Fibrosis: Challenges and Opportunities, Promises and Pitfalls. Proceedings of the American Thoracic Society, 2006, 3, 389-393.	3.5	76

#	Article	IF	CITATIONS
19	Overexpression of OSM and IL-6 impacts the polarization of pro-fibrotic macrophages and the development of bleomycin-induced lung fibrosis. Scientific Reports, 2017, 7, 13281.	1.6	73
20	4-Phenylbutyrate Inhibits Tunicamycin-Induced Acute Kidney Injury via CHOP/GADD153 Repression. PLoS ONE, 2014, 9, e84663.	1.1	73
21	Local Delivery of GM-CSF Protects Mice from Lethal Pneumococcal Pneumonia. Journal of Immunology, 2011, 187, 5346-5356.	0.4	72
22	Suboptimal treatment response to anti-IL-5 monoclonal antibodies in severe eosinophilic asthmatics with airway autoimmune phenomena. European Respiratory Journal, 2020, 56, 2000117.	3.1	71
23	Mechanical stress-induced mast cell degranulation activates TGF- \hat{l}^21 signalling pathway in pulmonary fibrosis. Thorax, 2019, 74, 455-465.	2.7	63
24	Comparison between conventional and "clinical" assessment of experimental lung fibrosis. Journal of Translational Medicine, 2008, 6, 16.	1.8	59
25	Essential Role of Osteopontin in Smoking-Related Interstitial Lung Diseases. American Journal of Pathology, 2009, 174, 1683-1691.	1.9	59
26	Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease. Chest, 2013, 143, 1098-1105.	0.4	58
27	Gene Therapy for Pulmonary Diseases. Chest, 2006, 130, 879-884.	0.4	53
28	Calcium Homeostasis and Ionic Mechanisms in Pulmonary Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 135-148.	1.4	50
29	<i>In Vivo</i> Role of Platelet-Derived Growth Factor–BB in Airway Smooth Muscle Proliferation in Mouse Lung. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 566-572.	1.4	49
30	Macitentan reduces progression of TGF- \hat{l}^21 -induced pulmonary fibrosis and \hat{A} pulmonary hypertension. European Respiratory Journal, 2018, 52, 1701857.	3.1	46
31	Connective-Tissue Growth Factor Contributes to TGF-β1–induced Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 260-270.	1.4	45
32	Lysyl Oxidase–Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1–induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 461-470.	1.4	44
33	1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells. Toxicology and Applied Pharmacology, 2008, 230, 175-186.	1.3	42
34	Disruption of Calcium Signaling in Fibroblasts and Attenuation of Bleomycin-Induced Fibrosis by Nifedipine. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 450-458.	1.4	42
35	Synergistic role of HSP90Î \pm and HSP90Î 2 to promote myofibroblast persistence in lung fibrosis. European Respiratory Journal, 2018, 51, 1700386.	3.1	41
36	Reduction of Nilutamide by NO Synthases:Â Implications for the Adverse Effects of This Nitroaromatic Antiandrogen Drug. Chemical Research in Toxicology, 2003, 16, 1547-1554.	1.7	36

#	Article	IF	CITATIONS
37	Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function. Journal of Hypertension, 2016, 34, 1556-1569.	0.3	36
38	Microbial Regulation of Enteric Eosinophils and Its Impact on Tissue Remodeling and Th2 Immunity. Frontiers in Immunology, 2020, 11, 155.	2.2	36
39	Three-dimensional computed tomography imaging in an animal model of emphysema. European Respiratory Journal, 2007, 30, 1082-1089.	3.1	34
40	Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor- \hat{l}^21 . Respiratory Research, 2010, 11, 181.	1.4	34
41	Endoplasmic reticulum stress inhibition attenuates hypertensive chronic kidney disease through reduction in proteinuria. Scientific Reports, 2017, 7, 41572.	1.6	33
42	Cell surface expression of 78-kDa glucose-regulated protein (GRP78) mediates diabetic nephropathy. Journal of Biological Chemistry, 2019, 294, 7755-7768.	1.6	31
43	Current models of pulmonary fibrosis for future drug discovery efforts. Expert Opinion on Drug Discovery, 2020, 15, 931-941.	2.5	31
44	Role of STAT6 and SMAD2 in a model of chronic allergen exposure: a mouse strain comparison study. Clinical and Experimental Allergy, 2009, 39, 147-158.	1.4	28
45	Characterization of Proliferating Lesionâ€Resident Cells During All Stages of Atherosclerotic Growth. Journal of the American Heart Association, 2016, 5, .	1.6	28
46	Endoplasmic reticulum stress inhibition limits the progression of chronic kidney disease in the Dahl salt-sensitive rat. American Journal of Physiology - Renal Physiology, 2017, 312, F230-F244.	1.3	28
47	Monocyte and macrophage derived myofibroblasts: Is it fate? A review of the current evidence. Wound Repair and Regeneration, 2021, 29, 548-562.	1.5	27
48	Separate roles of <scp>lL</scp> â€6 and oncostatin M in mouse macrophage polarization <i>in vitro</i> and <i>in vivo</i> . Immunology and Cell Biology, 2018, 96, 257-272.	1.0	26
49	Granzyme B Deficiency Exacerbates Lung Inflammation in Mice after Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 453-462.	1.4	23
50	Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease. Chest, 2020, 157, 1207-1220.	0.4	23
51	A Robust Protocol for Decellularized Human Lung Bioink Generation Amenable to 2D and 3D Lung Cell Culture. Cells, 2021, 10, 1538.	1.8	22
52	Distribution of nitroreductive activity toward nilutamide in rat. Toxicology and Applied Pharmacology, 2004, 201, 1-9.	1.3	20
53	<scp>IL</scp> â€6 mediates <scp>ER</scp> expansion during hyperpolarization of alternatively activated macrophages. Immunology and Cell Biology, 2019, 97, 203-217.	1.0	18
54	Expression of endocannabinoid system components in human airway epithelial cells: impact of sex and chronic respiratory disease status. ERJ Open Research, 2020, 6, 00128-2020.	1.1	16

#	Article	IF	Citations
55	Pan-Lysyl Oxidase Inhibitor PXS-5505 Ameliorates Multiple-Organ Fibrosis by Inhibiting Collagen Crosslinks in Rodent Models of Systemic Sclerosis. International Journal of Molecular Sciences, 2022, 23, 5533.	1.8	15
56	The transforming growth factor-beta (TGF-β) family and pulmonary fibrosis. Drug Discovery Today Disease Mechanisms, 2006, 3, 99-103.	0.8	13
57	Metabolism of nilutamide in rat lung. Biochemical Pharmacology, 2006, 71, 377-385.	2.0	11
58	Development of a Model of Chronic Kidney Disease in the C57BL/6 Mouse with Properties of Progressive Human CKD. BioMed Research International, 2015, 2015, 1-10.	0.9	11
59	FK506-Binding Protein 13 Expression Is Upregulated in Interstitial Lung Disease and Correlated with Clinical Severity. A Potentially Protective Role. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 235-246.	1.4	10
60	Lasting Changes to Circulating Leukocytes in People with Mild SARS-CoV-2 Infections. Viruses, 2021, 13, 2239.	1.5	10
61	Inhalation: A means to explore and optimize nintedanib's pharmacokinetic/pharmacodynamic relationship. Pulmonary Pharmacology and Therapeutics, 2020, 63, 101933.	1.1	9
62	Cell-specific drug targeting in the lung. Biochemical Pharmacology, 2021, 190, 114577.	2.0	9
63	ABCF1 Regulates dsDNA-induced Immune Responses in Human Airway Epithelial Cells. Frontiers in Cellular and Infection Microbiology, 2020, 10, 487.	1.8	8
64	Mouse Models of Lung Fibrosis. Methods in Molecular Biology, 2021, 2299, 291-321.	0.4	8
65	Engineered microenvironment for the study of myofibroblast mechanobiology. Wound Repair and Regeneration, 2021, 29, 588-596.	1.5	7
66	Increased Monocyte-Derived CD11b+ Macrophage Subpopulations Following Cigarette Smoke Exposure Are Associated With Impaired Bleomycin-Induced Tissue Remodelling. Frontiers in Immunology, 2021, 12, 740330.	2.2	7
67	Have advanced research technologies made real impact on respiratory medicine?. Respirology, 2010, 15, 876-880.	1.3	6
68	Circulating fibrocytes are not disease-specific prognosticators in idiopathic pulmonary fibrosis. European Respiratory Journal, 2021, 58, 2100172.	3.1	6
69	Advanced detection strategies for cardiotropic virus infection in a cohort study of heart failure patients. Laboratory Investigation, 2022, 102, 14-24.	1.7	6
70	Emerging therapeutic targets for idiopathic pulmonary fibrosis: preclinical progress and therapeutic implications. Expert Opinion on Therapeutic Targets, 2021, 25, 939-948.	1.5	6
71	Galectin-3 levels are elevated following nintedanib treatment. Therapeutic Advances in Chronic Disease, 2020, 11, 204062232096841.	1.1	5
72	Cigarette smoke augments CSF3 expression in neutrophils to compromise alveolar–capillary barrier function during influenza infection. European Respiratory Journal, 2022, 60, 2102049.	3.1	5

#	Article	IF	Citations
73	Type I interferon regulates proteolysis by macrophages to prevent immunopathology following viral infection. PLoS Pathogens, 2022, 18, e1010471.	2.1	5
74	Mechanisms linked to differences in the mutagenic potential of 1,3-dinitropyrene and 1,8-dinitropyrene. Toxicology Reports, 2014, 1, 459-473.	1.6	4
75	Drug development for chronic lung disease ―Mission impossible?. Respirology, 2015, 20, 13-14.	1.3	4
76	Activin A and Cell-Surface GRP78 Are Novel Targetable RhoA Activators for Diabetic Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 2839.	1.8	4
77	Shroom3, a Gene Associated with CKD, Modulates Epithelial Recovery after AKI. Kidney360, 2022, 3, 51-62.	0.9	4
78	IFNAR blockade synergizes with oncolytic VSV to prevent virus-mediated PD-L1 expression and promote antitumor TÂcell activity. Molecular Therapy - Oncolytics, 2022, 25, 16-30.	2.0	4
79	Strategies targeting fibrosis in pulmonary disease. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 389-394.	0.5	3
80	Mononuclear phagocytic system and fibrosis: back to the future?. European Respiratory Journal, 2021, 57, 2004466.	3.1	2
81	An Evaluation of Cardiac Health in the Spontaneously Hypertensive Rat Colony: Implications of Evolutionary Driven Increases in Concentric Hypertrophy. American Journal of Hypertension, 2022, 35, 264-271.	1.0	2
82	Potentiation of long-acting \hat{l}^2 2-agonist and glucocorticoid responses in human airway epithelial cells by modulation of intracellular cAMP. Respiratory Research, 2021, 22, 266.	1.4	2
83	CD200S-positive granulated lymphoid cells in endometrium appear to be CD56-positive uterine NK cells. Journal of Reproductive Immunology, 2022, 150, 103477.	0.8	2
84	Adenoviral-Mediated Gene Transfer into Bone Marrow: An Effective Surgical Technique in Rat. European Surgical Research, 2013, 50, 282-291.	0.6	1
85	$TGF\hat{I}^2$ and Smad3 link inflammation to progressive fibrosis. International Congress Series, 2007, 1302, 103-113.	0.2	0
86	Targeting fibrosis in respiratory lung disease. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 97-100.	0.5	0
87	The use of small animal imaging in respiratory disease drug discovery. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 81-85.	0.5	0
88	TGF-beta Antagonist Antibody 1D11 Blocks Experimental Progressive Pulmonary Fibrosis, 2009, , .		0
89	Growth Factors. , 2009, , 353-361.		0
90	Adenoviral Gene Transfer Of Granulocyte/Macrophage Colony Stimulating Factor Enhances Pulmonary Host Defense And Survival From Pneumococcal Pneumonia In Mice., 2011,,.		0

#	Article	IF	CITATIONS
91	Biomarkers in interstitial lung disease: moving towards composite indexes and multimarkers?. Current Pulmonology Reports, 2015, 4, 125-129.	0.5	O
92	Assessing the Role of ATF6 \hat{l}_{\pm} in the Alternative Activation of Macrophages in the Progression of Fibrotic Lung Diseases. , 2019, , .		0
93	Integrative -Omics Identify Potential Biomarkers and Therapeutic Targets for Idiopathic Pulmonary Fibrosis. , 2020, , .		O
94	Safety of Surgical Lung Biopsy for Diagnosis of Interstitial Lung Diseases. , 2021, , .		0