List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/24914/publications.pdf Version: 2024-02-01



TAKAMASA SAKAI

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers. Macromolecules, 2008, 41, 5379-5384. | 4.8  | 1,040     |
| 2  | "Nonswellable―Hydrogel Without Mechanical Hysteresis. Science, 2014, 343, 873-875.                                                                                      | 12.6 | 511       |
| 3  | Structure Characterization of Tetra-PEG Gel by Small-Angle Neutron Scattering. Macromolecules, 2009, 42, 1344-1351.                                                     | 4.8  | 247       |
| 4  | SANS and SLS Studies on Tetra-Arm PEG Gels in As-Prepared and Swollen States. Macromolecules, 2009, 42, 6245-6252.                                                      | 4.8  | 227       |
| 5  | Transition between Phantom and Affine Network Model Observed in Polymer Gels with Controlled Network Structure. Macromolecules, 2013, 46, 1035-1040.                    | 4.8  | 172       |
| 6  | Connectivity and Structural Defects in Model Hydrogels: A Combined Proton NMR and Monte Carlo<br>Simulation Study. Macromolecules, 2011, 44, 9666-9674.                 | 4.8  | 161       |
| 7  | Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nature<br>Biomedical Engineering, 2017, 1, .                                      | 22.5 | 150       |
| 8  | Highly Elastic and Deformable Hydrogel Formed from Tetraâ€∎rm Polymers. Macromolecular Rapid<br>Communications, 2010, 31, 1954-1959.                                    | 3.9  | 136       |
| 9  | Examination of the Theories of Rubber Elasticity Using an Ideal Polymer Network. Macromolecules, 2011, 44, 5817-5821.                                                   | 4.8  | 133       |
| 10 | High-performance ion gel with tetra-PEG network. Soft Matter, 2012, 8, 1756-1759.                                                                                       | 2.7  | 129       |
| 11 | Yielding Criteria of Double Network Hydrogels. Macromolecules, 2016, 49, 1865-1872.                                                                                     | 4.8  | 119       |
| 12 | Evaluation of Topological Defects in Tetra-PEG Gels. Macromolecules, 2010, 43, 488-493.                                                                                 | 4.8  | 112       |
| 13 | Design of Hydrogels for Biomedical Applications. Advanced Healthcare Materials, 2015, 4, 2360-2374.                                                                     | 7.6  | 108       |
| 14 | Fracture energy of polymer gels with controlled network structures. Journal of Chemical Physics, 2013, 139, 144905.                                                     | 3.0  | 102       |
| 15 | Synthesis and Fracture Process Analysis of Double Network Hydrogels with a Well-Defined First<br>Network. ACS Macro Letters, 2013, 2, 518-521.                          | 4.8  | 99        |
| 16 | Kinetic Aspect on Gelation Mechanism of Tetra-PEG Hydrogel. Macromolecules, 2014, 47, 3274-3281.                                                                        | 4.8  | 76        |
| 17 | Network elasticity of a model hydrogel as a function of swelling ratio: from shrinking to extreme<br>swelling states. Soft Matter, 2018, 14, 9693-9701.                 | 2.7  | 71        |
| 18 | Precise Control and Prediction of Hydrogel Degradation Behavior. Macromolecules, 2011, 44, 3567-3571.                                                                   | 4.8  | 67        |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Evaluation of Gelation Kinetics of Tetra-PEG Gel. Macromolecules, 2010, 43, 3935-3940.                                                                                                            | 4.8  | 66        |
| 20 | Effect of swelling and deswelling on the elasticity of polymer networks in the dilute to semi-dilute region. Soft Matter, 2012, 8, 2730.                                                          | 2.7  | 66        |
| 21 | Nonâ€Osmotic Hydrogels: A Rational Strategy for Safely Degradable Hydrogels. Angewandte Chemie -<br>International Edition, 2016, 55, 9282-9286.                                                   | 13.8 | 58        |
| 22 | Experimental verification of homogeneity in polymer gels. Polymer Journal, 2014, 46, 517-523.                                                                                                     | 2.7  | 57        |
| 23 | Dynamic Covalent Star Poly(ethylene glycol) Model Hydrogels: A New Platform for Mechanically<br>Robust, Multifunctional Materials. Macromolecules, 2017, 50, 2155-2164.                           | 4.8  | 57        |
| 24 | Near-Model Amphiphilic Polymer Conetworks Based on Four-Arm Stars of Poly(vinylidene fluoride)<br>and Poly(ethylene glycol): Synthesis and Characterization. Macromolecules, 2018, 51, 2476-2488. | 4.8  | 57        |
| 25 | SANS Studies on Tetra-PEG Gel under Uniaxial Deformation. Macromolecules, 2011, 44, 1203-1210.                                                                                                    | 4.8  | 54        |
| 26 | Exploiting gradients in cross-link density to control the bending and self-propelled motion of active gels. Journal of Materials Chemistry, 2011, 21, 8360.                                       | 6.7  | 51        |
| 27 | Reliable Hydrogel with Mechanical "Fuse Link―in an Aqueous Environment. Advanced Materials, 2015,<br>27, 7407-7411.                                                                               | 21.0 | 51        |
| 28 | Precision polymer network science with tetra-PEG gels—a decade history and future. Colloid and<br>Polymer Science, 2019, 297, 1-12.                                                               | 2.1  | 50        |
| 29 | Gelation mechanism and mechanical properties of Tetra-PEG gel. Reactive and Functional Polymers, 2013, 73, 898-903.                                                                               | 4.1  | 49        |
| 30 | Nearly Ideal Polymer Network Ion Gel Prepared in pH-Buffering Ionic Liquid. Macromolecules, 2016, 49,<br>344-352.                                                                                 | 4.8  | 48        |
| 31 | Ultimate elongation of polymer gels with controlled network structure. RSC Advances, 2013, 3, 13251.                                                                                              | 3.6  | 47        |
| 32 | Sol-gel transition behavior near critical concentration and connectivity. Polymer Journal, 2016, 48, 629-634.                                                                                     | 2.7  | 47        |
| 33 | Organized Monolayer of Thermosensitive Microgel Beads Prepared by Double-Template Polymerization.<br>Langmuir, 2007, 23, 8651-8654.                                                               | 3.5  | 46        |
| 34 | Mechanical properties of a polymer network of Tetra-PEG gel. Polymer Journal, 2013, 45, 300-306.                                                                                                  | 2.7  | 46        |
| 35 | Kinetic Study for AB-Type Coupling Reaction of Tetra-Arm Polymers. Macromolecules, 2012, 45, 1031-1036.                                                                                           | 4.8  | 45        |
| 36 | Enzymatic Synthesis of Cellulose Oligomer Hydrogels Composed of Crystalline Nanoribbon Networks under Macromolecular Crowding Conditions. ACS Macro Letters, 2017, 6, 165-170.                    | 4.8  | 45        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Autonomous viscosity oscillation by reversible complex formation of terpyridine-terminated poly(ethylene glycol) in the BZ reaction. Soft Matter, 2010, 6, 6072.                                                  | 2.7  | 44        |
| 38 | Small-Angle Neutron Scattering Study on Defect-Controlled Polymer Networks. Macromolecules, 2014, 47, 1801-1809.                                                                                                  | 4.8  | 43        |
| 39 | Structural Analysis of High Performance Ion-Gel Comprising Tetra-PEG Network. Macromolecules, 2012, 45, 3902-3909.                                                                                                | 4.8  | 42        |
| 40 | High-performance gel electrolytes with tetra-armed polymer network for Li ion batteries. Journal of<br>Power Sources, 2015, 286, 470-474.                                                                         | 7.8  | 41        |
| 41 | Rubber elasticity for incomplete polymer networks. Journal of Chemical Physics, 2012, 137, 224903.                                                                                                                | 3.0  | 40        |
| 42 | Strain energy density function of a near-ideal polymer network estimated by biaxial deformation of<br>Tetra-PEG gel. Soft Matter, 2012, 8, 8217.                                                                  | 2.7  | 40        |
| 43 | Experimental verification of fracture mechanism for polymer gels with controlled network structure. Soft Matter, 2014, 10, 6658-6665.                                                                             | 2.7  | 40        |
| 44 | Fabrication and Structural Characterization of Module-Assembled Amphiphilic Conetwork Gels.<br>Macromolecules, 2016, 49, 4940-4947.                                                                               | 4.8  | 38        |
| 45 | Silk Resin with Hydrated Dual Chemical-Physical Cross-Links Achieves High Strength and Toughness.<br>Biomacromolecules, 2017, 18, 1937-1946.                                                                      | 5.4  | 38        |
| 46 | Design of novel biomimetic polymer gels with self-oscillating function. Science and Technology of Advanced Materials, 2002, 3, 95-102.                                                                            | 6.1  | 35        |
| 47 | Carbon Dioxide Separation Using a High-toughness Ion Gel with a Tetra-armed Polymer Network.<br>Chemistry Letters, 2015, 44, 17-19.                                                                               | 1.3  | 34        |
| 48 | Solvation Structure of Poly(ethylene glycol) in Ionic Liquids Studied by High-energy X-ray Diffraction and Molecular Dynamics Simulations. Macromolecules, 2013, 46, 2369-2375.                                   | 4.8  | 33        |
| 49 | Fracture Process of Double-Network Gels by Coarse-Grained Molecular Dynamics Simulation.<br>Macromolecules, 2018, 51, 3075-3087.                                                                                  | 4.8  | 32        |
| 50 | Enzyme-Catalyzed Bottom-Up Synthesis of Mechanically and Physicochemically Stable Cellulose<br>Hydrogels for Spatial Immobilization of Functional Colloidal Particles. Biomacromolecules, 2018, 19,<br>1269-1275. | 5.4  | 32        |
| 51 | Diffusion Behavior of Water Molecules in Hydrogels with Controlled Network Structure.<br>Macromolecules, 2019, 52, 1923-1929.                                                                                     | 4.8  | 32        |
| 52 | Tri-branched gels: Rubbery materials with the lowest branching factor approach the ideal elastic limit. Science Advances, 2022, 8, eabk0010.                                                                      | 10.3 | 32        |
| 53 | Microscopic Structure of the "Nonswellable―Thermoresponsive Amphiphilic Conetwork.<br>Macromolecules, 2017, 50, 3388-3395.                                                                                        | 4.8  | 31        |
| 54 | Experimental Observation of Two Features Unexpected from the Classical Theories of Rubber Elasticity. Physical Review Letters, 2017, 119, 267801.                                                                 | 7.8  | 31        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Gels: From Soft Matter to BioMatter. Industrial & Engineering Chemistry Research, 2018, 57, 1121-1128.                                                                                                                        | 3.7 | 31        |
| 56 | Anomalous volume phase transition in a polymer gel with alternative hydrophilic–amphiphilic<br>sequence. Soft Matter, 2012, 8, 6876.                                                                                          | 2.7 | 30        |
| 57 | Structure-property relationship of a model network containing solvent. Science and Technology of Advanced Materials, 2019, 20, 608-621.                                                                                       | 6.1 | 30        |
| 58 | Mechanical Properties of Polymer Gels with Bimodal Distribution in Strand Length. Macromolecules, 2013, 46, 7027-7033.                                                                                                        | 4.8 | 29        |
| 59 | Multiscale Dynamics of Inhomogeneity-Free Polymer Gels. Macromolecules, 2014, 47, 763-770.                                                                                                                                    | 4.8 | 29        |
| 60 | Mechanical properties of tetra-PEG gels with supercoiled network structure. Journal of Chemical Physics, 2014, 140, 074902.                                                                                                   | 3.0 | 27        |
| 61 | Degradation Behavior of Polymer Gels Caused by Nonspecific Cleavages of Network Strands.<br>Chemistry of Materials, 2014, 26, 5352-5357.                                                                                      | 6.7 | 24        |
| 62 | Rubber elasticity for percolation network consisting of Gaussian chains. Journal of Chemical Physics, 2015, 143, 184905.                                                                                                      | 3.0 | 24        |
| 63 | An ionic liquid gel with ultralow concentrations of tetra-arm polymers: Gelation kinetics and mechanical and ion-conducting properties. Polymer, 2019, 166, 38-43.                                                            | 3.8 | 24        |
| 64 | Connectivity dependence of gelation and elasticity in AB-type polymerization: an experimental comparison of the dynamic process and stoichiometrically imbalanced mixing. Soft Matter, 2019, 15, 5017-5025.                   | 2.7 | 24        |
| 65 | Electrophoretic Mobility of Double-Stranded DNA in Polymer Solutions and Gels with Tuned<br>Structures. Macromolecules, 2014, 47, 3582-3586.                                                                                  | 4.8 | 23        |
| 66 | Defect-free network formation and swelling behavior in ionic liquid-based electrolytes of tetra-arm<br>polymers synthesized using a Michael addition reaction. Physical Chemistry Chemical Physics, 2017, 19,<br>29984-29990. | 2.8 | 23        |
| 67 | Permeation of Water through Hydrogels with Controlled Network Structure. Macromolecules, 2017, 50, 9411-9416.                                                                                                                 | 4.8 | 22        |
| 68 | Universal Equation of State Describes Osmotic Pressure throughout Gelation Process. Physical<br>Review Letters, 2020, 125, 267801.                                                                                            | 7.8 | 20        |
| 69 | Probe Diffusion of Sol–Gel Transition in an Isorefractive Polymer Solution. Macromolecules, 2017, 50, 2916-2922.                                                                                                              | 4.8 | 19        |
| 70 | Structure and physical properties of dried Tetra-PEG gel. Polymer, 2011, 52, 4123-4128.                                                                                                                                       | 3.8 | 18        |
| 71 | A computer simulation of the networked structure of a hydrogel prepared from a tetra-armed star pre-polymer. Soft Matter, 2014, 10, 3553.                                                                                     | 2.7 | 18        |
| 72 | Linear elasticity of polymer gels in terms of negative energy elasticity. Polymer Journal, 2021, 53, 1293-1303.                                                                                                               | 2.7 | 18        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Migration Behavior of Rodlike dsDNA under Electric Field in Homogeneous Polymer Networks.<br>Macromolecules, 2013, 46, 8657-8663.                                                                    | 4.8  | 17        |
| 74 | Swelling Behaviors of Hydrogels with Alternating Neutral/Highly Charged Sequences.<br>Macromolecules, 2020, 53, 8244-8254.                                                                           | 4.8  | 17        |
| 75 | BrÃ,nsted Basicity of Solute Butylamine in an Aprotic Ionic Liquid Investigated by Potentiometric<br>Titration. Chemistry Letters, 2013, 42, 1250-1251.                                              | 1.3  | 16        |
| 76 | Chemoenzymatic synthesis of polypeptides consisting of periodic di- and tri-peptide motifs similar to elastin. Polymer Chemistry, 2018, 9, 2336-2344.                                                | 3.9  | 15        |
| 77 | Three cooperative diffusion coefficients describing dynamics of polymer gels. Chemical Communications, 2018, 54, 6784-6787.                                                                          | 4.1  | 15        |
| 78 | Relationship between Bulk Physicochemical Properties and Surface Wettability of Hydrogels with<br>Homogeneous Network Structure. Langmuir, 2020, 36, 5554-5562.                                      | 3.5  | 15        |
| 79 | Shrinking Kinetics of Polymer Gels with Alternating Hydrophilic/Thermoresponsive Prepolymer Units.<br>Macromolecules, 2013, 46, 4114-4119.                                                           | 4.8  | 14        |
| 80 | Gelation Mechanism of Tetra-armed Poly(ethylene glycol) in Aprotic Ionic Liquid Containing<br>Nonvolatile Proton Source, Protic Ionic Liquid. Journal of Physical Chemistry B, 2015, 119, 4795-4801. | 2.6  | 14        |
| 81 | SANS Study on Critical Polymer Clusters of Tetra-Functional Polymers. Macromolecules, 2017, 50, 3655-3661.                                                                                           | 4.8  | 14        |
| 82 | Insight into the Microscopic Structure of Module-Assembled Thermoresponsive Conetwork<br>Hydrogels. Macromolecules, 2018, 51, 6645-6652.                                                             | 4.8  | 14        |
| 83 | Starâ€Polymer–DNA Gels Showing Highly Predictable and Tunable Mechanical Responses. Advanced<br>Materials, 2022, 34, e2108818.                                                                       | 21.0 | 14        |
| 84 | Implementation of tetra-poly(ethylene glycol) hydrogel with high mechanical strength into microfluidic device technology. Biomicrofluidics, 2013, 7, 054109.                                         | 2.4  | 13        |
| 85 | Effect of Swelling and Deswelling on Mechanical Properties of Polymer Gels. Macromolecular<br>Symposia, 2015, 358, 128-139.                                                                          | 0.7  | 13        |
| 86 | Slope-Dependent Cell Motility Enhancements at the Walls of PEG-Hydrogel Microgroove Structures.<br>Langmuir, 2015, 31, 10215-10222.                                                                  | 3.5  | 13        |
| 87 | Probing the cross-effect of strains in non-linear elasticity of nearly regular polymer networks by pure shear deformation. Journal of Chemical Physics, 2015, 142, 174908.                           | 3.0  | 13        |
| 88 | Nonâ€Osmotic Hydrogels: A Rational Strategy for Safely Degradable Hydrogels. Angewandte Chemie,<br>2016, 128, 9428-9432.                                                                             | 2.0  | 12        |
| 89 | Association Behavior of Poly(ethylene oxide)–Poly(propylene oxide) Alternating Multiblock<br>Copolymers in Water toward Thermally Induced Phase Separation. Langmuir, 2017, 33, 14649-14656.<br>–    | 3.5  | 12        |
| 90 | Electrochemical Properties of a TetraPEG-based Gel Electrolyte Containing a Nonflammable<br>Fluorinated Alkyl Phosphate for Safer Lithium-ion Batteries. Chemistry Letters, 2018, 47, 909-912.       | 1.3  | 12        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Phase Transition Behaviors of Self-Oscillating Polymer and Nano-Gel Particles. Macromolecular Rapid Communications, 2005, 26, 1140-1144.                                                                              | 3.9 | 11        |
| 92  | Effect of prepolymer architecture on the network structure formed by AB-type crosslink-coupling.<br>Polymer Journal, 2014, 46, 14-20.                                                                                 | 2.7 | 11        |
| 93  | TetraPEG Network Formation via a Michael Addition Reaction in an Ionic Liquid: Application to Polymer<br>Gel Electrolyte for Electric Double-layer Capacitors. Chemistry Letters, 2019, 48, 704-707.                  | 1.3 | 11        |
| 94  | On-demand retrieval of cells three-dimensionally seeded in injectable thioester-based hydrogels. RSC<br>Advances, 2021, 11, 23637-23643.                                                                              | 3.6 | 11        |
| 95  | Temperature Dependence of Polymer Network Diffusion. Physical Review Letters, 2021, 127, 237801.                                                                                                                      | 7.8 | 11        |
| 96  | Shear Modulus Dependence of the Diffusion Coefficient of a Polymer Network. Macromolecules, 2019, 52, 9613-9619.                                                                                                      | 4.8 | 10        |
| 97  | Mechanical Regulation Underlies Effects of Exercise on Serotonin-Induced Signaling in the Prefrontal Cortex Neurons. IScience, 2020, 23, 100874.                                                                      | 4.1 | 10        |
| 98  | Dynamics of Critical Clusters Synthesized by End-Coupling of Four-Armed Poly(ethylene glycol)s.<br>Macromolecules, 2019, 52, 5086-5094.                                                                               | 4.8 | 9         |
| 99  | Dilution Effect on the Cluster Growth near the Gelation Threshold. Nihon Reoroji Gakkaishi, 2019, 47,<br>61-66.                                                                                                       | 1.0 | 9         |
| 100 | Cluster growth from a dilute system in a percolation process. Polymer Journal, 2020, 52, 289-297.                                                                                                                     | 2.7 | 9         |
| 101 | Electrophoretic mobility of semi-flexible double-stranded DNA in defect-controlled polymer<br>networks: Mechanism investigation and role of structural parameters. Journal of Chemical Physics,<br>2015, 142, 234904. | 3.0 | 8         |
| 102 | New design of hydrogels with tuned electro-osmosis: a potential model system to understand<br>electro-kinetic transport in biological tissues. Journal of Materials Chemistry B, 2017, 5, 4526-4534.                  | 5.8 | 8         |
| 103 | Negative Energy Elasticity in a Rubberlike Gel. Physical Review X, 2021, 11, .                                                                                                                                        | 8.9 | 8         |
| 104 | Experimental Comparison of Bond Lifetime and Viscoelastic Relaxation in Transient Networks with<br>Well-Controlled Structures. ACS Macro Letters, 2022, 11, 753-759.                                                  | 4.8 | 8         |
| 105 | Mixing and Elastic Contributions to the Diffusion Coefficient of Polymer Networks. Macromolecules, 2020, 53, 7717-7725.                                                                                               | 4.8 | 7         |
| 106 | Hemostatic Capability of a Novel Tetra-Polyethylene Glycol Hydrogel. Annals of Vascular Surgery, 2022, 84, 398-404.                                                                                                   | 0.9 | 7         |
| 107 | Anodic oxides on gallium phosphide for optoelectronic device and processing applications. Journal of Applied Physics, 1978, 49, 4459-4464.                                                                            | 2.5 | 6         |
| 108 | Characterization of a self-oscillating polymer with periodic soluble-insoluble changes. Journal of<br>Polymer Science, Part B: Polymer Physics, 2007, 45, 1578-1588.                                                  | 2.1 | 6         |

| #   | Article                                                                                                                                                                                          | IF                | CITATIONS    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 109 | Kinetics-dominated structure and stimuli-responsiveness in the assembly of colloidal nanotubes. RSC<br>Advances, 2016, 6, 52950-52956.                                                           | 3.6               | 6            |
| 110 | A Biomechanical Comparison of Three Miniature Locking Plate Systems in a Rabbit Radial and Ulnar<br>Fracture Model. Veterinary and Comparative Orthopaedics and Traumatology, 2019, 32, 297-304. | 0.5               | 5            |
| 111 | Mechanical properties of doubly crosslinked gels. Polymer Journal, 2019, 51, 851-859.                                                                                                            | 2.7               | 5            |
| 112 | Ability of Nonswelling Polyethylene Glycol-Based Vitreous Hydrogel to Maintain Transparency in the<br>Presence of Vitreous Hemorrhage. Translational Vision Science and Technology, 2019, 8, 33. | 2.2               | 5            |
| 113 | Effect of Nonlinear Elasticity on the Swelling Behaviors of Highly Swollen Polyelectrolyte Gels. Gels, 2021, 7, 25.                                                                              | 4.5               | 5            |
| 114 | æ§‹é€æ~Žç¢ºãªé«~å^†åã,2ルã®ã,2ルåŒ−éŽç∵ãë力å¦ç‰¹æ€§ã®è§£æ~Žã∗é−¢ã™ã,‹ç"ç©¶. Nihon Reoroji Gak                                                                                                       | kaisbi, 201       | 19547, 183-1 |
| 115 | Brownian simulations for tetra-gel-type phantom networks composed of prepolymers with bidisperse arm length. Soft Matter, 2022, 18, 4715-4724.                                                   | 2.7               | 5            |
| 116 | Supercoiling transformation of chemical gels. Soft Matter, 2015, 11, 7101-7108.                                                                                                                  | 2.7               | 4            |
| 117 | Surgical sealants with tunable swelling, burst pressures, and biodegradation rates. Journal of<br>Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1602-1611.             | 3.4               | 4            |
| 118 | Synchronization of Self-Oscillation in Polymer Chains and the Cross-Linked Network. ACS Symposium Series, 2003, , 30-43.                                                                         | 0.5               | 3            |
| 119 | Biomaterials: Design of Hydrogels for Biomedical Applications (Adv. Healthcare Mater. 16/2015).<br>Advanced Healthcare Materials, 2015, 4, 2598-2598.                                            | 7.6               | 3            |
| 120 | Preparation and characterization of a nanofiber mat consisting of Tetraâ€PEG prepolymers. Journal of<br>Applied Polymer Science, 2015, 132, .                                                    | 2.6               | 3            |
| 121 | Co-lyophilized Aspirin with Trehalose Causes Less Injury to Human Gastric Cells and Gastric Mucosa of Rats. Digestive Diseases and Sciences, 2016, 61, 2242-2251.                                | 2.3               | 3            |
| 122 | Dynamics of thermoresponsive conetwork gels composed of poly(ethylene glycol) and poly(ethyl) Tj ETQq0 0 0 r                                                                                     | gBT /Overl<br>3.8 | oçk 10 Tf 50 |
|     |                                                                                                                                                                                                  |                   |              |

| 123 | Molecular crystallization directed by polymer size and overlap under dilute and crowded macromolecular conditions. Polymer Journal, 2021, 53, 633-642.                                   | 2.7 | 3 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 124 | The feasibility of a novel injectable hydrogel for protecting artificial gastrointestinal ulcers after endoscopic resection: an animal pilot study. Scientific Reports, 2021, 11, 18508. | 3.3 | 3 |
| 125 | Relationships between Mechanical Properties of Polymer Gels and Polymer Volume Fractions at<br>Preparation and at Interested State. Nihon Reoroji Gakkaishi, 2014, 42, 97-102.           | 1.0 | 2 |
| 126 | Similarity in Linear Viscoelastic Behaviors of Network Formation and Degradation Processes. Nihon<br>Reoroji Gakkaishi, 2020, 48, 191-198.                                               | 1.0 | 2 |

8

TAKAMASA SAKAI

| #   | Article                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Non-swellability of polyelectrolyte gel in divalent salt solution due to aggregation formation.<br>Polymer, 2022, 250, 124894. | 3.8 | 2         |

Hydrogels: Reliable Hydrogel with Mechanical  $\hat{a} \in \hat{c}$  Fuse Link $\hat{a} \in \hat{c}$  in an Aqueous Environment (Adv. Mater.) Tj ETQq0  $\mathcal{Q}_{21.0}^{0}$  Pg PrgBT /Qverlock 10

| 129 | Robust Suture Combination for Rat Flexor Tendon Repair Model. Journal of Hand Surgery Global Online, 2020, 2, 354-358.                                                          | 0.8 | 1 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 130 | Structure and Properties of High Performance Gels Made by Module Assembling Method. Materials<br>Research Society Symposia Proceedings, 2012, 1418, 99.                         | 0.1 | 0 |
| 131 | Back Cover: Macromol. Biosci. 6/2014. Macromolecular Bioscience, 2014, 14, 900-900.                                                                                             | 4.1 | 0 |
| 132 | Investigation of migration behavior of rod-like dsDNA in gel with precisely controlled network structure. Materials Research Society Symposia Proceedings, 2014, 1622, 169-174. | 0.1 | 0 |
| 133 | Mechanical properties of polymer gels with bimodal distribution in strand length. Materials Research<br>Society Symposia Proceedings, 2014, 1622, 31-36.                        | 0.1 | 0 |
| 134 | Correlation Between the Physical Properties and Structure of Tetra-PEG Gels. Nippon Gomu Kyokaishi,<br>2014, 87, 89-95.                                                         | 0.0 | 0 |
| 135 | Molecular Dynamics Simulation of a Coarse Grained Model of Tetra-PEG Gel with Monomers of 5 and 9 particles. , 2015, , .                                                        |     | 0 |
| 136 | Injectable hydrogel with Controlled Swelling Behavior in vivo. Drug Delivery System, 2019, 34, 186-200.                                                                         | 0.0 | 0 |
| 137 | Preparation of Spatio-temporal Functional Surface using Self-oscillating Gel. Hyomen Kagaku, 2007, 28, 647-652.                                                                 | 0.0 | 0 |
| 138 | Diffusion Behavior of Water Molecules in Hydrogels with Controlled Network Structure. ECS<br>Meeting Abstracts, 2018, , .                                                       | 0.0 | 0 |
| 139 | Thermodynamic Analysis of Polymer Gel Elasticity. ECS Meeting Abstracts, 2018, , .                                                                                              | 0.0 | 0 |
| 140 | (Invited) Instantly Formative Hydrogels with Super-Low Polymeric Component. ECS Meeting Abstracts, 2018, , .                                                                    | 0.0 | 0 |
| 141 | Similarity between Gel and Semi-Dilute Solution. ECS Meeting Abstracts, 2018, , .                                                                                               | 0.0 | 0 |
| 142 | Quantitative Evaluation of Homogeneous Hydrogel Surface Wettability. ECS Meeting Abstracts, 2018, ,                                                                             | 0.0 | 0 |