## Jinglian Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2491396/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | Phase stability, elastic and electronic properties of Cu–Zr binary system intermetallic compounds: A first-principles study. Journal of Alloys and Compounds, 2014, 588, 96-102.                                                                                                 | 2.8 | 64        |
| 2 | First-principles studies on structural, mechanical, thermodynamic and electronic properties of Ni–Zr<br>intermetallic compounds. Intermetallics, 2014, 54, 110-119.                                                                                                              | 1.8 | 64        |
| 3 | Atomistic underpinnings for growth direction and pattern formation of hcp magnesium alloy dendrite. Acta Materialia, 2018, 161, 35-46.                                                                                                                                           | 3.8 | 52        |
| 4 | A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection.<br>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,<br>2018, 49, 3603-3615.                                                           | 1.0 | 47        |
| 5 | Dendritic Growth Under Natural and Forced Convection in Al-Cu Alloys: From Equiaxed to Columnar<br>Dendrites and from 2D to 3D Phase-Field Simulations. Metallurgical and Materials Transactions B:<br>Process Metallurgy and Materials Processing Science, 2019, 50, 1514-1526. | 1.0 | 45        |
| 6 | Novel three dimensional topological nodal line semimetallic carbon. Carbon, 2016, 98, 468-473.                                                                                                                                                                                   | 5.4 | 36        |
| 7 | Determining characteristic principal clusters in the "cluster-plus-glue-atom―model. Acta Materialia,<br>2014, 75, 113-121.                                                                                                                                                       | 3.8 | 34        |

## 8 Atomic cluster structures, phase stability and physicochemical properties of binary Mg-X (X= Ag, Al,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

| 9  | Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification. Acta Materialia, 2021, 214, 117005.                                                                                                                             | 3.8 | 34 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 10 | Composition-structure-property correlations of complex metallic alloys described by the<br>"cluster-plus-glue-atom―model. Applied Materials Today, 2017, 7, 13-46.                                                                                                        | 2.3 | 33 |
| 11 | Cluster characteristics and physical properties of binary Al–Zr intermetallic compounds from first principles studies. Computational Materials Science, 2015, 103, 170-178.                                                                                               | 1.4 | 30 |
| 12 | Correlation between crystallographic anisotropy and dendritic orientation selection of binary magnesium alloys. Scientific Reports, 2017, 7, 13600.                                                                                                                       | 1.6 | 29 |
| 13 | Atomistic Determination of Anisotropic Surface Energy-Associated Growth Patterns of Magnesium Alloy Dendrites. ACS Omega, 2017, 2, 8803-8809.                                                                                                                             | 1.6 | 27 |
| 14 | Mechanism of the growth pattern formation and three-dimensional morphological transition of hcp<br>magnesium alloy dendrite. Physical Review Materials, 2018, 2, .                                                                                                        | 0.9 | 23 |
| 15 | Lamellar eutectic growth under forced convection: A phase-field lattice-Boltzmann study based on a<br>modified Jackson-Hunt theory. Physical Review E, 2018, 98, .                                                                                                        | 0.8 | 21 |
| 16 | Phase-Field Modeling of Microstructure Evolution in the Presence of Bubble During Solidification.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51,<br>1023-1037.                                                       | 1.1 | 21 |
| 17 | Growth pattern and orientation selection of magnesium alloy dendrite: From 3-D experimental characterization to theoretical atomistic simulation. Materials Today Communications, 2017, 13, 155-162.                                                                      | 0.9 | 17 |
| 18 | Dependence of Lamellar Eutectic Growth with Convection on Boundary Conditions and Geometric<br>Confinement: A Phase-Field Lattice-Boltzmann Study. Metallurgical and Materials Transactions B:<br>Process Metallurgy and Materials Processing Science, 2019, 50, 517-530. | 1.0 | 17 |

Jinglian Du

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | First principles studies on the structural, elastic, electronic properties and heats of formation of<br>Mg–AE (AEÂ=ÂCa, Sr, Ba) intermetallics. Intermetallics, 2013, 32, 156-161.                                    | 1.8 | 16        |
| 20 | Application of non-equilibrium dendrite growth model considering thermo-kinetic correlation in twin-roll casting. Journal of Materials Science and Technology, 2020, 44, 209-222.                                     | 5.6 | 16        |
| 21 | Phase-field lattice-Boltzmann investigation of dendritic evolution under different flow modes.<br>Philosophical Magazine, 2019, 99, 2920-2940.                                                                        | 0.7 | 15        |
| 22 | Effect of additional solute elements (X= Al, Ca, Y, Ba, Sn, Gd and Zn) on crystallographic anisotropy<br>during the dendritic growth of magnesium alloys. Journal of Alloys and Compounds, 2019, 775, 322-329.        | 2.8 | 15        |
| 23 | Mechanism of hydrogen production via water splitting on 3C-SiC's different surfaces: A<br>first-principles study. Computational Materials Science, 2014, 95, 451-455.                                                 | 1.4 | 14        |
| 24 | Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface<br>tracking. Physical Review E, 2019, 100, 023305.                                                               | 0.8 | 14        |
| 25 | Abnormal solute distribution near the eutectic triple point. Scripta Materialia, 2019, 165, 64-67.                                                                                                                    | 2.6 | 13        |
| 26 | Solution to Multiscale and Multiphysics Problems: A Phaseâ€Field Study of Fully Coupled<br>Thermalâ€Soluteâ€Convection Dendrite Growth. Advanced Theory and Simulations, 2021, 4, 2000251.                            | 1.3 | 13        |
| 27 | Three-dimensional thermosolutal simulation of dendritic and eutectic growth. Computational Materials Science, 2020, 171, 109274.                                                                                      | 1.4 | 12        |
| 28 | Hidden electronic rule in the "cluster-plus-glue-atom―model. Scientific Reports, 2016, 6, 33672.                                                                                                                      | 1.6 | 10        |
| 29 | Modeling competitive precipitations among iron carbides during low-temperature tempering of martensitic carbon steel. Materialia, 2020, 12, 100800.                                                                   | 1.3 | 10        |
| 30 | Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions. Journal of<br>Chemical Physics, 2014, 140, 164704.                                                                           | 1.2 | 9         |
| 31 | Electrochemical Potential Derived from Atomic Cluster Structures. Journal of Physical Chemistry<br>Letters, 2016, 7, 567-571.                                                                                         | 2.1 | 9         |
| 32 | General hierarchical structure to solve transport phenomena with dissimilar time scales: Application<br>in large-scale three-dimensional thermosolutal phase-field problems. Physical Review E, 2020, 102,<br>043313. | 0.8 | 8         |
| 33 | Quantitative and qualitative correlations by atomistic determination for the precipitated phases in<br>Al–Li–Cu system. Intermetallics, 2019, 112, 106551.                                                            | 1.8 | 7         |
| 34 | Phase-field lattice-Boltzmann study on eutectic growth with coupled heat and solute diffusion.<br>International Journal of Heat and Mass Transfer, 2019, 145, 118778.                                                 | 2.5 | 7         |
| 35 | Regulating lamellar eutectic trajectory through external perturbations. Physical Review E, 2020, 101, 061301.                                                                                                         | 0.8 | 6         |
| 36 | Evolution of specific interface area during solidification: A three-dimensional thermosolutal phase-field study. Computer Physics Communications, 2021, 267, 108042.                                                  | 3.0 | 6         |

Jinglian Du

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Atomistic determination on stability, cluster and microstructures in terms of crystallographic and thermo-kinetic integration of Alâ <sup>~</sup> Mgâ <sup>~</sup> Si alloys. Materials Today Communications, 2020, 24, 101220. | 0.9 | 5         |
| 38 | Underpinned exploration for magnetic structure, lattice dynamics, electronic properties, and disproportionation of yttrium nickelate. AIP Advances, 2021, 11, .                                                                 | 0.6 | 5         |
| 39 | Can twins enhance the elastic stiffness of face-centered-cubic metals?. Computational Materials Science, 2014, 89, 24-29.                                                                                                       | 1.4 | 2         |
| 40 | Multiscale Simulation of α-Mg Dendrite Growth via 3D Phase Field Modeling and Ab Initio First Principle<br>Calculations. Minerals, Metals and Materials Series, 2017, , 263-272.                                                | 0.3 | 2         |
| 41 | "Order―in metallic glass: Maximum uniformity distribution of cluster electrochemical potential.<br>Materials Chemistry and Physics, 2018, 215, 305-309.                                                                         | 2.0 | 1         |