## Fangni Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2491390/publications.pdf Version: 2024-02-01



FANCNILE

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nature Communications, 2022, 13, 336.                           | 12.8 | 25        |
| 2  | Quasi-global machine learning-based soil moisture estimates at high spatio-temporal scales using CYGNSS and SMAP observations. Remote Sensing of Environment, 2022, 276, 113041.              | 11.0 | 28        |
| 3  | Machine learning-based global soil moisture estimation using GNSS-R. , 2022, , .                                                                                                              |      | 1         |
| 4  | Spatial and Temporal Interpolation of CYGNSS Soil Moisture Estimations. , 2021, , .                                                                                                           |      | 1         |
| 5  | Quasi-Global CNSS-R Soil Moisture Retrievals at High Spatio-Temporal Resolution from Cygnss and Smap Data. , 2021, , .                                                                        |      | 3         |
| 6  | Data assimilation of high-resolution thermal and radar remote sensing retrievals for soil moisture monitoring in a drip-irrigated vineyard. Remote Sensing of Environment, 2020, 239, 111622. | 11.0 | 46        |
| 7  | Soil Evaporation Stress Determines Soil Moistureâ€Evapotranspiration Coupling Strength in Land<br>Surface Modeling. Geophysical Research Letters, 2020, 47, e2020GL090391.                    | 4.0  | 27        |
| 8  | Evaluations of Machine Learning-Based CYGNSS Soil Moisture Estimates against SMAP Observations.<br>Remote Sensing, 2020, 12, 3503.                                                            | 4.0  | 41        |
| 9  | Triple Collocation Based Multi-Source Precipitation Merging. Frontiers in Water, 2020, 2, .                                                                                                   | 2.3  | 26        |
| 10 | Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS. Remote Sensing, 2020, 12, 1168.                                                                               | 4.0  | 82        |
| 11 | Soil Moisture–Evapotranspiration Overcoupling and L-Band Brightness Temperature Assimilation:<br>Sources and Forecast Implications. Journal of Hydrometeorology, 2020, 21, 2359-2374.         | 1.9  | 21        |
| 12 | Machine-Learning Based Retrieval of Soil Moisture at High Spatio-Temporal Scales Using CYGNSS and SMAP Observations. , 2020, , .                                                              |      | 2         |
| 13 | Extending the SMAP 9-km soil moisture product using a spatio-temporal fusion model. Remote Sensing of Environment, 2019, 231, 111224.                                                         | 11.0 | 13        |
| 14 | A Global Assessment of Added Value in the SMAP Level 4 Soil Moisture Product Relative to Its Baseline<br>Land Surface Model. Geophysical Research Letters, 2019, 46, 6604-6613.               | 4.0  | 31        |
| 15 | Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error. Remote Sensing of Environment, 2018, 205, 85-99.                                       | 11.0 | 21        |
| 16 | Global Investigation of Soil Moisture and Latent Heat Flux Coupling Strength. Water Resources<br>Research, 2018, 54, 8196-8215.                                                               | 4.2  | 34        |
| 17 | The Grape Remote Sensing Atmospheric Profile and Evapotranspiration Experiment. Bulletin of the American Meteorological Society, 2018, 99, 1791-1812.                                         | 3.3  | 88        |
| 18 | Evaluation of Multiple Downscaled Microwave Soil Moisture Products over the Central Tibetan Plateau. Remote Sensing, 2017, 9, 402.                                                            | 4.0  | 21        |

Fangni Lei

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the<br>Land Surface Temperature Input. Climate, 2016, 4, 50.                                                                  | 2.8 | 17        |
| 20 | Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation. Geophysical Research Letters, 2015, 42, 8415-8423.                                                               | 4.0 | 36        |
| 21 | The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States. Remote Sensing, 2015, 7, 13448-13465.                                                 | 4.0 | 40        |
| 22 | Improving the estimation of hydrological states in the SWAT model via the ensemble Kalman smoother:<br>Synthetic experiments for the Heihe River Basin in northwest China. Advances in Water Resources,<br>2014, 67, 32-45. | 3.8 | 33        |
| 23 | Application of the vineyard data assimilation (VIDA) system to vineyard root-zone soil moisture monitoring in the California Central Valley. Irrigation Science, 0, , 1.                                                    | 2.8 | 6         |