
Eduardo Osorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2491299/publications.pdf Version: 2024-02-01

Εσιμαρίο Οεορίο

#	Article	IF	CITATIONS
1	Review of the rice production cycle: By-products and the main applications focusing on rice husk combustion and ash recycling. Waste Management and Research, 2014, 32, 1034-1048.	3.9	95
2	Study of coal, char and coke fines structures and their proportions in the off-gas blast furnace samples by X-ray diffraction. Fuel, 2013, 114, 224-228.	6.4	79
3	Integrating physicochemical information to follow the transformations of biomass upon torrefaction and low-temperature carbonization. Fuel, 2014, 131, 17-27.	6.4	61
4	Characterization and Reduction Behavior of Mill Scale. ISIJ International, 2011, 51, 1072-1079.	1.4	56
5	Steam gasification of biochar derived from elephant grass pyrolysis in a screw reactor. Energy Conversion and Management, 2017, 153, 163-174.	9.2	50
6	Combustion of eucalyptus charcoals and coals of similar volatile yields aiming at blast furnace injection in a CO2 mitigation environment. Journal of Cleaner Production, 2016, 129, 1-11.	9.3	45
7	How coke optical texture became a relevant tool for understanding coal blending and coke quality. Fuel Processing Technology, 2017, 164, 13-23.	7.2	45
8	Evaluation of petrology and reactivity of coal blends for use in pulverized coal injection (PCI). International Journal of Coal Geology, 2006, 68, 14-29.	5.0	44
9	Effect of charcoal blending with a vitrinite rich coking coal on coke reactivity. Fuel Processing Technology, 2017, 155, 97-105.	7.2	44
10	Aspects for a cleaner production approach for coal and biomass use as a decentralized energy source in southern Brazil. Journal of Cleaner Production, 2013, 47, 85-95.	9.3	31
11	Exploring the possibilities of using Brazilian subbituminous coals for blast furnace pulverized fuel injection. Fuel, 2005, 84, 763-772.	6.4	30
12	Coal char combustion under a CO2-rich atmosphere: Implications for pulverized coal injection in a blast furnace. Fuel Processing Technology, 2008, 89, 1017-1024.	7.2	29
13	Reactivity of brazilian coal, charcoal, imported coal and blends aiming to their injection into blast furnaces. Materials Research, 2010, 13, 287-292.	1.3	26
14	On the reduction behavior, structural and mechanical features of iron ore-carbon briquettes. Fuel Processing Technology, 2017, 155, 238-245.	7.2	23
15	Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace. Materials Research, 2006, 9, 91-95.	1.3	20
16	Reactivity to CO2 of chars prepared in O2/N2 and O2/CO2 mixtures for pulverized coal injection (PCI) in blast furnace in relation to char petrographic characteristics. International Journal of Coal Geology, 2010, 84, 293-300.	5.0	19
17	Pulverized combustion under conventional (O 2 /N 2) and oxy-fuel (O 2 /CO 2) conditions of biomasses treated at different temperatures. Fuel Processing Technology, 2017, 155, 174-182.	7.2	19
18	Carbon Gasification in Self-reducing Mixtures. ISIJ International, 2014, 54, 2687-2696.	1.4	18

EDUARDO OSORIO

#	Article	IF	CITATIONS
19	Automated procedure for coke microstructural characterization in imagej software aiming industrial application. Fuel, 2021, 304, 121374.	6.4	15
20	Evaluation of the thermoplastic behavior of charcoal, coal tar and coking coal blends. Journal of Materials Research and Technology, 2020, 9, 3406-3410.	5.8	14
21	Non-isothermal combustion behaviour of coal blends in a thermobalance as seen by optical microscopy. Thermochimica Acta, 2008, 475, 1-7.	2.7	11
22	Combustibility and reactivity of coal blends and charcoal fines aiming use in ironmaking. Materials Research, 2016, 19, 594-601.	1.3	9
23	Scale Recycling Through Self-Reducing Briquettes to Use in EAF. ISIJ International, 2017, 57, 2081-2090.	1.4	9
24	Steam Gasification of Biochar Derived from the Pyrolysis of Chromeâ€Tanned Leather Shavings. Chemical Engineering and Technology, 2019, 42, 2530-2538.	1.5	8
25	Study on reducing and melting behavior of mill scale/petroleum coke blend. Tecnologia Em Metalurgia, Materiais E Mineracao, 2013, 10, 365-374.	0.2	8
26	Investigation of the Structure of the Biochar Obtained by Slow Pyrolysis of Elephant Grass during Its Steam Gasification. Chemical Engineering and Technology, 2019, 42, 2546-2555.	1.5	6
27	Demineralization of Brazilian Coals for Use in Gasification and Oxy-Fuel Combustion Processes, Aiming to Reduce CO ₂ Emissions. Energy & Fuels, 2017, 31, 8560-8571.	5.1	5
28	Critical analysis of non-isothermal kinetics of poultry litter pyrolysis. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2329-2338.	3.6	5
29	Non-isothermal kinetic study of fodder radish seed cake pyrolysis: performance of model-free and model-fitting methods. Brazilian Journal of Chemical Engineering, 2020, 37, 139-155.	1.3	5
30	Carbothermic reduction of Electric Arc Furnace Dust via thermogravimetry. REM: International Engineering Journal, 2018, 71, 411-418.	0.4	4
31	Thermoplastic interaction of ultra-high fluidity Brazilian coal with components of blends. Journal of Materials Research and Technology, 2020, 9, 2737-2743.	5.8	3
32	Kinetics of the Oxy-fuel Combustion of High-Ash-Content Coal from the Candiota Mine, Rio Grande do Sul. Energy & Fuels, 2016, 30, 1958-1964.	5.1	2
33	Multi-technique characterization of chromated copper arsenate-treated wooden utility poles from the Brazilian electricity network. European Journal of Wood and Wood Products, 2019, 77, 279-291.	2.9	1
34	Evaluation of zinc removal and compressive strength of self-reducing pellets composed of Electric Arc Furnace Dust. REM: International Engineering Journal, 2019, 72, 71-77.	0.4	0
35	DESENVOLVIMENTO DE EQUIPAMENTO DE LABORATÓRIO PARA SIMULAR PCI EM ALTOS-FORNOS. , 0, , .		0
36	Treatment of a forging industry graphite-rich wastewater and sludge characterization. , 0, 112, 72-79.		0