
Limin Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2491002/publications.pdf Version: 2024-02-01

LIMIN DEN

#	Article	IF	CITATIONS
1	A bidirectional and low-frequency energy harvester for collecting human crowd energy in shopping malls. Energy Conversion and Management, 2022, 252, 115046.	9.2	4
2	A Semi-Modularization Moment, Axial Force and Torque Force Sensor, From Concept to Realization. IEEE Sensors Journal, 2022, 22, 8466-8473.	4.7	2
3	A Moment and Torque Sensor With a Birfield-Type Structure, Using a Mechanically Self-Decoupled Method. IEEE Sensors Journal, 2022, 22, 14815-14824.	4.7	2
4	A Moment and Axial Force Sensor Using a Self-Decoupled, Passive and Wireless Method. IEEE Sensors Journal, 2021, 21, 21432-21440.	4.7	4
5	A Wireless and Passive Strain Sensor With Improved Sensitivity Enabled by Negative Poisson's Ratio Structure. IEEE Sensors Journal, 2021, 21, 4433-4441.	4.7	15
6	Scavenging energy from wind-induced power transmission line vibration using an omnidirectional harvester in smart grids. Energy Conversion and Management, 2021, 238, 114173.	9.2	14
7	Design and Experiment of a Cardan-Type Self-Decoupled and Self-Powered Bending Moment and Torque Sensor. IEEE Transactions on Industrial Electronics, 2021, 68, 5366-5375.	7.9	17
8	Harvesting the negative work of an active exoskeleton robot to extend its operating duration. Energy Conversion and Management, 2021, 245, 114640.	9.2	15
9	Bending moment and torque detection: A passive, wireless, and self-decoupled approach. Mechanical Systems and Signal Processing, 2021, 160, 107934.	8.0	6
10	A T-Type Self-Decoupled and Passive Dynamic Tension and Torque Sensor: Design, Fabrication, and Experiments. IEEE Access, 2020, 8, 203804-203813.	4.2	1
11	A Self-Powered Magnetostrictive Sensor for Long-Term Earthquake Monitoring. IEEE Transactions on Magnetics, 2020, 56, 1-5.	2.1	7
12	An Hourglass-Shaped Wireless and Passive Magnetoelastic Sensor with an Improved Frequency Sensitivity for Remote Strain Measurements. Sensors, 2020, 20, 359.	3.8	8
13	Gathering energy from ultra-low-frequency human walking using a double-frequency up-conversion harvester in public squares. Energy Conversion and Management, 2020, 217, 112958.	9.2	27
14	Wireless Magnetoelasticity-Based Sensor for Monitoring the Degradation Behavior of Polylactic Acid Artificial Bone In Vitro. Applied Sciences (Switzerland), 2019, 9, 739.	2.5	5
15	Energy Harvesting From an Artificial Bone. IEEE Access, 2019, 7, 120065-120075.	4.2	7
16	A Two-Dimensional Wireless and Passive Sensor for Stress Monitoring. Sensors, 2019, 19, 135.	3.8	12
17	Applications and Advances of Magnetoelastic Sensors in Biomedical Engineering: A Review. Materials, 2019, 12, 1135.	2.9	38
18	Wireless and Passive Magnetoelastic-Based Sensor for Force Monitoring of Artificial Bone. IEEE Sensors Journal, 2019, 19, 2096-2104.	4.7	14

Limin Ren

#	Article	IF	CITATIONS
19	Monitoring and Assessing the Degradation Rate of Magnesium-Based Artificial Bone In Vitro Using a Wireless Magnetoelastic Sensor. Sensors, 2018, 18, 3066.	3.8	13
20	An intelligent dental robot. Advanced Robotics, 2018, 32, 659-669.	1.8	6
21	A Passive and Wireless Sensor for Bone Plate Strain Monitoring. Sensors, 2017, 17, 2635.	3.8	24