
Saravanan Nagappan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2490721/publications.pdf Version: 2024-02-01

SADAVANAN NACADDAN

#	Article	IF	CITATIONS
1	Heteroatom-doped nanomaterials/core–shell nanostructure based electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 987-1021.	5.2	24
2	Metal-free pristine halloysite nanotubes: Electrochemically active and stable oxygen evolution reaction. Applied Clay Science, 2022, 219, 106442.	2.6	10
3	Transition metal oxy/hydroxides functionalized flexible halloysite nanotubes for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 618, 518-528.	5.0	11
4	Implementation of heteroatom-doped nanomaterial/core–shell nanostructure based electrocatalysts for fuel cells and metal-ion/air/sulfur batteries. Materials Advances, 2022, 3, 6096-6124.	2.6	8
5	Fabrication of robust selfâ€cleaning superhydrophobic coating by deposition of polymer layer on candle soot surface. Journal of Applied Polymer Science, 2021, 138, 49943.	1.3	26
6	Polyethyleneimine-grafted polysilsesquioxane hollow spheres for the highly efficient removal of anionic dyes and selective adsorption of Cr(VI). Journal of Environmental Chemical Engineering, 2021, 9, 104814.	3.3	23
7	Facile synthesis of silver nanoparticles stabilized dual responsive silica nanohybrid: A highly active switchable catalyst for oxidation of alcohols in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125846.	2.3	14
8	Dual stimuli-responsive silver nanoparticles decorated SBA‒15 hybrid catalyst for selective oxidation of alcohols under â€~mild' conditions. Microporous and Mesoporous Materials, 2021, 311, 110697.	2.2	7
9	Superhydrophobic Polymer/Nanoparticle Hybrids. , 2021, , 91-116.		Ο
10	Highly Transparent, Robust Hydrophobic, and Amphiphilic Organic–Inorganic Hybrid Coatings for Antifogging and Antibacterial Applications. ACS Applied Materials & Interfaces, 2021, 13, 6615-6630.	4.0	35
11	Dual (thermo-/pH-) responsive P(NIPAM-co-AA-co-HEMA) nanocapsules for controlled release of 5-fluorouracil. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 860-871.	1.2	11
12	Transparent and Hard Siloxane Based Hybrid UV-Curable Coating Materials with Amphiphobic Properties. Journal of Nanoscience and Nanotechnology, 2021, 21, 4450-4456.	0.9	1
13	Recent Advances on Conducting Polymer-Supported Nanocomposites for Nonenzymatic Electrochemical Sensing. Industrial & Engineering Chemistry Research, 2021, 60, 13425-13437.	1.8	12
14	Superhydrophobic Al2O3–Polymer Composite Coating for Self-Cleaning Applications. Coatings, 2021, 11, 1162.	1.2	14
15	Synthesis of size-controlled and highly monodispersed silica nanoparticles using a short alkyl-chain fluorinated surfactant. RSC Advances, 2021, 11, 2194-2201.	1.7	1
16	Photocatalytic and Superhydrophilic TiO 2 â€5iO 2 Coatings on Marble for Self leaning Applications. Macromolecular Symposia, 2021, 400, 2100083.	0.4	3
17	Octadecyltrichlorosilaneâ€Modified Superhydrophobicâ€Superoleophilic Stainless Steel Mesh for Oilâ€Water Separation. Macromolecular Symposia, 2021, 400, .	0.4	15
18	Pd nanoparticle incorporated mesoporous silicas with excellent catalytic activity and dual responsivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124074.	2.3	17

Saravanan Nagappan

#	Article	IF	CITATIONS
19	Recent Advances in durability of superhydrophobic self-cleaning technology: A critical review. Progress in Organic Coatings, 2020, 138, 105381.	1.9	266
20	Palladium nanoparticles-anchored dual-responsive SBA-15-PNIPAM/PMAA nanoreactor: a novel heterogeneous catalyst for a green Suzuki–Miyaura cross-coupling reaction. RSC Advances, 2020, 10, 28193-28204.	1.7	19
21	Dual Stimuli-Responsive Copper Nanoparticles Decorated SBA-15: A Highly Efficient Catalyst for the Oxidation of Alcohols in Water. Nanomaterials, 2020, 10, 2051.	1.9	8
22	Ethylene vinyl acetate (EVA)/poly(lactic acid) (PLA) blends and their foams. Molecular Crystals and Liquid Crystals, 2020, 707, 38-45.	0.4	8
23	Polyketone nanofiber: an effective reinforcement for the development of novel <scp>UVâ€curable</scp> , highly transparent and flexible polyurethane nanocomposite films. Polymer International, 2020, 69, 1008-1017.	1.6	11
24	Sawdust-based superhydrophobic pellets for efficient oil-water separation. Materials Chemistry and Physics, 2020, 243, 122634.	2.0	63
25	Silver nanoparticles impregnated pH-responsive nanohybrid system for the catalytic reduction of dyes. Microporous and Mesoporous Materials, 2020, 303, 110260.	2.2	21
26	Vulcanization behavior and mechanical properties of isoprene-modified silica reinforced butyl rubber composites. Molecular Crystals and Liquid Crystals, 2020, 707, 46-58.	0.4	0
27	Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Progress in Organic Coatings, 2019, 137, 105373.	1.9	129
28	Sulfamerazine Schiff-base complex intercalated layered double hydroxide: synthesis, characterization, and antimicrobial activity. Heliyon, 2019, 5, e01521.	1.4	26
29	Hexadecyltrimethylammonium Bromide Surfactant-Supported Silica Material for the Effective Adsorption of Metanil Yellow Dye. ACS Omega, 2019, 4, 8548-8558.	1.6	21
30	UV-curable organic–inorganic hybrid hard coatings for metal sheets. Journal of Coatings Technology Research, 2019, 16, 771-780.	1.2	2
31	Cover Image, Volume 67, Issue 1. Polymer International, 2018, 67, i-i.	1.6	Ο
32	Preparation and properties of poly(lactic acid)/lipophilized graphene oxide nanohybrids. Polymer International, 2018, 67, 91-99.	1.6	9
33	Superior one-pot synthesis of a doped graphene oxide electrode for a high power density supercapacitor. New Journal of Chemistry, 2018, 42, 11093-11101.	1.4	34
34	Synthesis and functionalisation of mesoporous materials for transparent coatings and organic dye adsorption. New Journal of Chemistry, 2018, 42, 10254-10262.	1.4	11
35	In-situ addition of graphene oxide for improving the thermal stability of superhydrophobic hybrid materials. Polymer, 2017, 116, 412-422.	1.8	11
36	Thermally stable superhydrophobic polymethylhydrosiloxane nanohybrids with liquid marble-like structure. Macromolecular Research, 2017, 25, 387-390.	1.0	4

#	Article	IF	CITATIONS
37	One-pot synthesis of multi-functional magnetite–polysilsesquioxane hybrid nanoparticles for the selective Fe ³⁺ and some heavy metal ions adsorption. RSC Advances, 2017, 7, 19106-19116.	1.7	21
38	Stimuli-Responsive Smart Polymeric Coatings: An Overview. , 2016, , 27-49.		4
39	Properties of hydrophobically-modified graphene oxide (HG)/butyl rubber (IIR) nanocomposites prepared by shear mixing process. Composite Interfaces, 2016, 23, 819-829.	1.3	2
40	Superhydrophobic Hybrid Microâ€Nanocomposites with Various Applications. Macromolecular Symposia, 2015, 358, 202-211.	0.4	4
41	Synthesis and characterization of highly transparent and hydrophobic fluorinated polyimides derived from perfluorodecylthio substituted diamine monomers. Journal of Polymer Science Part A, 2015, 53, 479-488.	2.5	55
42	Camellia japonica-polysiloxane based superhydrophobic hybrid powder for the selective adsorption of metal ions from a mixture of metal ions in artificial sea water. Journal of Porous Materials, 2015, 22, 229-238.	1.3	7
43	Superhydrophobic mesoporous material as a pH-sensitive organic dye adsorbent. Journal of Industrial and Engineering Chemistry, 2015, 22, 288-295.	2.9	21
44	Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. Journal of Materials Chemistry A, 2015, 3, 3224-3251.	5.2	90
45	Recent Advances in Superhydrophobic Nanomaterials and Nanoscale Systems. Journal of Nanoscience and Nanotechnology, 2014, 14, 1441-1462.	0.9	43
46	Superhydrophobic and self-cleaning natural leaf powder/poly(methylhydroxysiloxane) hybrid micro-nanocomposites. Macromolecular Research, 2014, 22, 843-852.	1.0	11
47	Superhydrophobic hybrid micro-nanocomposites for non-stick and self-cleaning coatings. Composite Interfaces, 2014, 21, 597-609.	1.3	6
48	Highly transparent, hydrophobic fluorinated polymethylsiloxane/silica organic-inorganic hybrids for anti-stain coating. Macromolecular Research, 2013, 21, 669-680.	1.0	38
49	Polynorbornene/fluorosilica hybrids for hydrophobic and oleophobic coatings. Polymer Bulletin, 2013, 70, 619-630.	1.7	14
50	A highly transparent, amphiphobic, stable and multi-purpose poly(vinyl chloride) metallopolymer for anti-fouling and anti-staining coatings. Journal of Materials Chemistry A, 2013, 1, 12144.	5.2	36
51	Bio-inspired, multi-purpose and instant superhydrophobic–superoleophilic lotus leaf powder hybrid micro–nanocomposites for selective oil spill capture. Journal of Materials Chemistry A, 2013, 1, 6761.	5.2	64
52	Polymethylhydrosiloxane-based organic–inorganic hybrids for amphiphobic coatings. Composite Interfaces, 2013, 20, 33-43.	1.3	19