
Craig R White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2490628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How does spawning frequency scale with body size in marine fishes?. Fish and Fisheries, 2022, 23, 316-323.	2.7	11
2	Predicting the response of disease vectors to global change: The importance of allometric scaling. Global Change Biology, 2022, 28, 390-402.	4.2	7
3	Externally attached biologgers cause compensatory body mass loss in birds. Methods in Ecology and Evolution, 2022, 13, 294-302.	2.2	10
4	A hierarchical approach to understanding physiological associations with climate. Global Ecology and Biogeography, 2022, 31, 332-346.	2.7	12
5	Ecophysiology of a small ectotherm tracks environmental variation along an elevational cline. Journal of Biogeography, 2022, 49, 405-415.	1.4	12
6	A bioenergetics approach to understanding sex differences in the foraging behaviour of a sexually monomorphic species. Royal Society Open Science, 2022, 9, 210520.	1.1	6
7	Relationship between capillaries, mitochondria and maximum power of the heart: a meta-study from shrew to elephant. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212461.	1.2	2
8	Modelling and mapping how common guillemots balance their energy budgets over a full annual cycle. Functional Ecology, 2022, 36, 1612-1626.	1.7	2
9	A comparative analysis testing Werner's theory of complex life cycles. Functional Ecology, 2022, 36, 1986-2000.	1.7	2
10	Oxygen stress and reproduction do not impede aerobic performance in adult eastern mosquitofish (Gambusia holbrooki). Environmental Biology of Fishes, 2021, 104, 143-154.	0.4	2
11	Meta-analysis reveals that resting metabolic rate is not consistently related to fitness and performance in animals. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 1097-1110.	0.7	31
12	Plastic but not adaptive: habitatâ€driven differences in metabolic rate despite no differences in selection between habitats. Oikos, 2021, 130, 931-942.	1.2	7
13	Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends in Ecology and Evolution, 2021, 36, 321-332.	4.2	87
14	Geographical bias in physiological data limits predictions of global change impacts. Functional Ecology, 2021, 35, 1572-1578.	1.7	22
15	Metabolism drives demography in an experimental field test. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
16	The roles of diffusion and convection in ventilation of animal burrows. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 1047-1058.	0.7	2
17	Metabolic phenotype mediates the outcome of competitive interactions in a responseâ€surface field experiment. Ecology and Evolution, 2021, 11, 17952-17962.	0.8	1
18	A year in the life of a North Atlantic seabird: behavioural and energetic adjustments during the annual cycle. Scientific Reports, 2020, 10, 5993.	1.6	33

#	Article	IF	CITATIONS
19	Developmental nutrition modulates metabolic responses to projected climate change. Functional Ecology, 2020, 34, 2488-2502.	1.7	15
20	Artificial mass loading disrupts stable social order in pigeon dominance hierarchies. Biology Letters, 2020, 16, 20200468.	1.0	12
21	The effect of ambient oxygen on the thermal performance of a cockroach, <i>Nauphoeta cinerea</i> . Journal of Experimental Biology, 2020, 223, .	0.8	4
22	Flight activity and glycogen depletion on a low-carbohydrate diet. Journal of Experimental Biology, 2020, 223, .	0.8	1
23	Metabolic rate, context-dependent selection, and the competition-colonization trade-off. Evolution Letters, 2020, 4, 333-344.	1.6	26
24	Deadly but not Dangerous: How Ecologically Effective are Komodo Dragons as an Apex Predator?. Bulletin of the Ecological Society of America, 2020, 101, e01671.	0.2	1
25	Environmental Factors Influencing Hairyâ€Nosed Wombat Abundance in Semiâ€Arid Rangelands. Journal of Wildlife Management, 2020, 84, 921-929.	0.7	9
26	Developmental cost theory predicts thermal environment and vulnerability to global warming. Nature Ecology and Evolution, 2020, 4, 406-411.	3.4	40
27	Komodo dragons are not ecological analogs of apex mammalian predators. Ecology, 2020, 101, e02970.	1.5	18
28	Chronic exposure to a pervasive pharmaceutical pollutant erodes among-individual phenotypic variation in a fish. Environmental Pollution, 2020, 263, 114450.	3.7	24
29	Impacts of "supermoon―events on the physiology of a wild bird. Ecology and Evolution, 2019, 9, 7974-7984.	0.8	16
30	Powering Ocean Giants: The Energetics of Shark and Ray Megafauna. Trends in Ecology and Evolution, 2019, 34, 1009-1021.	4.2	31
31	The outsized trophic footprint of marine urbanization. Frontiers in Ecology and the Environment, 2019, 17, 400-406.	1.9	19
32	Terrestrial locomotion energy costs vary considerably between species: no evidence that this is explained by rate of leg force production or ecology. Scientific Reports, 2019, 9, 656.	1.6	6
33	Effects of body size, sex, parental care and moult strategies on auk diving behaviour outside the breeding season. Journal of Avian Biology, 2019, 50, .	0.6	11
34	Interspecific scaling of blood flow rates and arterial sizes in mammals. Journal of Experimental Biology, 2019, 222, .	0.8	17
35	The origin and maintenance of metabolic allometry in animals. Nature Ecology and Evolution, 2019, 3, 598-603.	3.4	86
36	Influence of food, body size, and fragmentation on metabolic rate in a sessile marine invertebrate. Invertebrate Biology, 2019, 138, 55-66.	0.3	14

#	Article	IF	CITATIONS
37	Phylogenetic investigation of skin sloughing rates in frogs: relationships with skin characteristics and disease-driven declines. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182378.	1.2	6
38	Should We Care If Models Are Phenomenological or Mechanistic?. Trends in Ecology and Evolution, 2019, 34, 276-278.	4.2	16
39	Flexibility, variability and constraint in energy management patterns across vertebrate taxa revealed by longâ€ŧerm heart rate measurements. Functional Ecology, 2019, 33, 260-272.	1.7	32
40	Linking lifeâ€history theory and metabolic theory explains the offspring sizeâ€ŧemperature relationship. Ecology Letters, 2019, 22, 518-526.	3.0	54
41	Aquatic Life History Trajectories Are Shaped by Selection, Not Oxygen Limitation. Trends in Ecology and Evolution, 2019, 34, 182-184.	4.2	19
42	Have We Outgrown the Existing Models of Growth?. Trends in Ecology and Evolution, 2019, 34, 102-111.	4.2	56
43	Miniaturization of biologgers is not alleviating the 5% rule. Methods in Ecology and Evolution, 2018, 9, 1662-1666.	2.2	64
44	Metabolic scaling across succession: Do individual rates predict communityâ€level energy use?. Functional Ecology, 2018, 32, 1447-1456.	1.7	13
45	Understanding variation in metabolic rate. Journal of Experimental Biology, 2018, 221, .	0.8	123
46	Does the cost of development scale allometrically with offspring size?. Functional Ecology, 2018, 32, 762-772.	1.7	16
47	Ecoâ€energetic consequences of evolutionary shifts in body size. Ecology Letters, 2018, 21, 54-62.	3.0	27
48	Flight feather moult drives minimum daily heart rate in wild geese. Biology Letters, 2018, 14, 20180650.	1.0	8
49	The role of parasitism in the energy management of a free-ranging bird. Journal of Experimental Biology, 2018, 221, .	0.8	9
50	Utility of time-lapse photography in studies of seabird ecology. PLoS ONE, 2018, 13, e0208995.	1.1	4
51	Legs of male fiddler crabs evolved to compensate for claw exaggeration and enhance claw functionality during waving displays. Evolution; International Journal of Organic Evolution, 2018, 72, 2491-2502.	1.1	12
52	A widespread thermodynamic effect, but maintenance of biological rates through space across life's major domains. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181775.	1.2	47
53	Testing MacArthur's minimisation principle: do communities minimise energy wastage during succession?. Ecology Letters, 2018, 21, 1182-1190.	3.0	8
54	The energetic cost of parasitism in a wild population. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180489.	1.2	29

#	Article	IF	CITATIONS
55	Loss of maternal EED results in postnatal overgrowth. Clinical Epigenetics, 2018, 10, 95.	1.8	34
56	On the Interplay among Ambient Temperature, Basal Metabolic Rate, and Body Mass. American Naturalist, 2018, 192, 518-524.	1.0	18
57	Fish reproductive-energy output increases disproportionately with body size. Science, 2018, 360, 642-645.	6.0	397
58	Short-duration respirometry underestimates metabolic rate for discontinuous breathers. Journal of Experimental Biology, 2018, 221, .	0.8	1
59	A model to estimate seabird field metabolic rates. Biology Letters, 2018, 14, 20180190.	1.0	18
60	A different angle: comparative analyses of whole-animal transport costs running uphill. Journal of Experimental Biology, 2017, 220, 161-166.	0.8	22
61	Estimating monotonic rates from biological data using local linear regression. Journal of Experimental Biology, 2017, 220, 759-764.	0.8	34
62	30ÂYears of <i>Functional Ecology</i> . Functional Ecology, 2017, 31, 4-6.	1.7	0
63	Perch height predicts dominance rank in birds. Ibis, 2017, 159, 456-462.	1.0	19
64	Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions. Global Change Biology, 2017, 23, 2321-2330.	4.2	30
65	Investigating movement in the laboratory: dispersal apparatus designs and the red flour beetle, <i><scp>T</scp>ribolium castaneum</i> . Entomologia Experimentalis Et Applicata, 2017, 163, 93-100.	0.7	9
66	Validating accelerometry estimates of energy expenditure across behaviours using heart rate data in a free-living seabird. Journal of Experimental Biology, 2017, 220, 1875-1881.	0.8	33
67	Phytoplankton sizeâ€scaling of netâ€energy flux across light and biomass gradients. Ecology, 2017, 98, 3106-3115.	1.5	21
68	Does energy flux predict densityâ€dependence? An empirical field test. Ecology, 2017, 98, 3116-3126.	1.5	15
69	Life in a bubble: the role of the labyrinth organ in determining territory, mating and aggressive behaviours in anabantoids. Journal of Fish Biology, 2017, 91, 723-749.	0.7	19
70	Boldness traits, not dominance, predict exploratory flight range and homing behaviour in homing pigeons. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160234.	1.8	23
71	Low-carbohydrate diet induces metabolic depression: a possible mechanism to conserve glycogen. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R347-R356.	0.9	13
72	Ocean sunfish as indicators for the â€~rise of slime'. Current Biology, 2017, 27, R1263-R1264.	1.8	10

#	Article	IF	CITATIONS
73	Skin sloughing in susceptible and resistant amphibians regulates infection with a fungal pathogen. Scientific Reports, 2017, 7, 3529.	1.6	35
74	Temperature effects on massâ€scaling exponents in colonial animals: a manipulative test. Ecology, 2017, 98, 103-111.	1.5	18
75	Colder environments did not select for a faster metabolism during experimental evolution of <i>Drosophila melanogaster</i> . Evolution; International Journal of Organic Evolution, 2017, 71, 145-152.	1.1	38
76	Functional traits in red flour beetles: the dispersal phenotype is associated with leg length but not body size nor metabolic rate. Functional Ecology, 2017, 31, 653-661.	1.7	20
77	Do invasive species live faster? Massâ€specific metabolic rate depends on growth form and invasion status. Functional Ecology, 2017, 31, 2080-2086.	1.7	32
78	Can respiratory physiology predict thermal niches?. Annals of the New York Academy of Sciences, 2016, 1365, 73-88.	1.8	65
79	Phylogenetic comparisons of pedestrian locomotion costs: confirmations and new insights. Ecology and Evolution, 2016, 6, 6712-6720.	0.8	10
80	Metabolic rate covaries with fitness and the pace of the life history in the field. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160323.	1.2	58
81	Biofilm history and oxygen availability interact to affect habitat selection in a marine invertebrate. Biofouling, 2016, 32, 645-655.	0.8	13
82	Associations between Resting, Activity, and Daily Metabolic Rate in Free-Living Endotherms: No Universal Rule in Birds and Mammals. Physiological and Biochemical Zoology, 2016, 89, 251-261.	0.6	41
83	The effects of laboratory housing and spatial enrichment on brain size and metabolic rate in the eastern mosquitofish, <i>Gambusia holbrooki</i> . Biology Open, 2016, 5, 205-210.	0.6	20
84	Maturity matters for movement and metabolic rate: trait dynamics across the early adult life of red flour beetles. Animal Behaviour, 2016, 111, 181-188.	0.8	13
85	Evolution of Plasticity: Mechanistic Link between Development and Reversible Acclimation. Trends in Ecology and Evolution, 2016, 31, 237-249.	4.2	219
86	Interpreting behaviors from accelerometry: a method combining simplicity and objectivity. Ecology and Evolution, 2015, 5, 4642-4654.	0.8	47
87	Why does offspring size affect performance? Integrating metabolic scaling with life-history theory. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151946.	1.2	41
88	The influence of climate on avian nest construction across large geographical gradients. Global Ecology and Biogeography, 2015, 24, 1203-1211.	2.7	34
89	Blood pressure increases with body size in mammals. Evolution; International Journal of Organic Evolution, 2015, 69, 3221-3223.	1.1	1
90	Does greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes?. , 2015, 3, cov010.		29

#	Article	IF	CITATIONS
91	Morphology and burrowing energetics of semi-fossorial skinks (<i>Liopholis</i>). Journal of Experimental Biology, 2015, 218, 2416-26.	0.8	40
92	Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 2015, 5, 61-66.	8.1	678
93	Skin sloughing rate increases with chytrid fungus infection load in a susceptible amphibian. Functional Ecology, 2015, 29, 674-682.	1.7	39
94	Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus. Journal of General Virology, 2015, 96, 3667-3671.	1.3	7
95	Avoiding low-oxygen environments: oxytaxis as a mechanism of habitat selection in a marine invertebrate. Marine Ecology - Progress Series, 2015, 540, 99-107.	0.9	15
96	Oxygen-induced plasticity in tracheal morphology and discontinuous gas exchange cycles in cockroaches Nauphoeta cinerea. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 977-990.	0.7	3
97	Metabolic incentives for dishonest signals of strength in crustaceans. Journal of Experimental Biology, 2014, 217, 2848-50.	0.8	17
98	THE ROLE OF GRAVITY IN THE EVOLUTION OF MAMMALIAN BLOOD PRESSURE. Evolution; International Journal of Organic Evolution, 2014, 68, 901-908.	1.1	47
99	Metabolic Scaling in Animals: Methods, Empirical Results, and Theoretical Explanations. , 2014, 4, 231-256.		147
100	Implantation reduces the negative effects of bio-logging devices on birds. Journal of Experimental Biology, 2013, 216, 537-42.	0.8	56
101	The repeatability of metabolic rate declines with time. Journal of Experimental Biology, 2013, 216, 1763-5.	0.8	89
102	Reversible brain inactivation induces discontinuous gas exchange in cockroaches. Journal of Experimental Biology, 2013, 216, 2012-6.	0.8	15
103	Performance correlates of resting metabolic rate in garden skinks Lampropholis delicata. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 663-673.	0.7	16
104	Balancing the competing requirements of air-breathing and display behaviour during male–male interactions in Siamese fighting fish Betta splendens. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 164, 363-367.	0.8	28
105	Determinants of inter-specific variation in basal metabolic rate. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 1-26.	0.7	172
106	Competition in benthic marine invertebrates: the unrecognized role of exploitative competition for oxygen. Ecology, 2013, 94, 126-135.	1.5	62
107	Energetic constraints may limit the capacity of visually guided predators to respond to <scp>A</scp> rctic warming. Journal of Zoology, 2013, 289, 119-126.	0.8	7
108	An increase in minimum metabolic rate and not activity explains field metabolic rate changes in a breeding seabird. Journal of Experimental Biology, 2013, 216, 1726-35.	0.8	18

#	Article	IF	CITATIONS
109	Space Partitioning Without Territoriality in Gannets. Science, 2013, 341, 68-70.	6.0	255
110	Physiological and metabolic consequences of viral infection in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2013, 216, 3350-7.	0.8	76
111	Effect of Thermal Acclimation on Organ Mass, Tissue Respiration, and Allometry in Leichhardtian River Prawns <i>Macrobrachium tolmerum</i> (Riek, 1951). Physiological and Biochemical Zoology, 2013, 86, 470-481.	0.6	6
112	Extravagant ornaments of male threadfin rainbowfish (<i><scp>I</scp>riatherina werneri</i>) are not costly for swimming. Functional Ecology, 2013, 27, 1034-1041.	1.7	14
113	Estimating physiological tolerances - a comparison of traditional approaches to nonlinear regression techniques. Journal of Experimental Biology, 2013, 216, 2176-82.	0.8	43
114	Visual habitat geometry predicts relative morph abundance in the colour-polymorphic ornate rainbowfish. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122377.	1.2	9
115	Discontinuous gas exchange exhibition is a heritable trait in speckled cockroaches <i><scp>N</scp>auphoeta cinerea</i> . Journal of Evolutionary Biology, 2013, 26, 1588-1597.	0.8	23
116	Discontinuous Gas Exchange, Water Loss, and Metabolism in <i>Protaetia cretica</i> (Cetoniinae,) Tj ETQq0 0 0 r	gBT /Over 0.6	ock 10 Tf 50
117	Wild geese do not increase flight behaviour prior to migration. Biology Letters, 2012, 8, 469-472.	1.0	21
118	Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 185-193.	1.2	30
119	Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 451-456.	1.2	58
120	A test of the oxidative damage hypothesis for discontinuous gas exchange in the locust Locusta migratoria. Biology Letters, 2012, 8, 682-684.	1.0	25
121	Maximum metabolic rate, relative lift, wingbeat frequency, and stroke amplitude during tethered-flight in the adult locust Locusta migratoria. Journal of Experimental Biology, 2012, 215, 3317-23.	0.8	17
122	Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1740-1747.	1.2	112
123	Symmorphosis and the insect respiratory system: a comparison between flight and hopping muscle. Journal of Experimental Biology, 2012, 215, 3324-33.	0.8	17
124	Standard metabolic rate is associated with gestation duration, but not clutch size, in speckled cockroaches <i>Nauphoeta cinerea</i> . Biology Open, 2012, 1, 1185-1191.	0.6	25
125	Relations between Conspecific Density and Effects of Ultravioletâ€B Radiation on Tadpole Size in the Striped Marsh Frog. Conservation Biology, 2012, 26, 1112-1120.	2.4	7

126 Testing Metabolic Theories. American Naturalist, 2012, 180, 546-565.

1.0 74

#	Article	IF	CITATIONS
127	Comparative energetics of mammalian locomotion: Humans are not different. Journal of Human Evolution, 2012, 63, 718-722.	1.3	19
128	An information-theoretic approach to evaluating the size and temperature dependence of metabolic rate. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3616-3621.	1.2	36
129	The energetic cost of exposure to UV radiation for tadpoles is greater when they live with predators. Functional Ecology, 2012, 26, 94-103.	1.7	41
130	COCKROACHES THAT EXCHANGE RESPIRATORY GASES DISCONTINUOUSLY SURVIVE FOOD AND WATER RESTRICTION. Evolution; International Journal of Organic Evolution, 2012, 66, 597-604.	1.1	55
131	Symmorphosis and the insect respiratory system: allometric variation. Journal of Experimental Biology, 2011, 214, 3225-3237.	0.8	31
132	Can the Basal Metabolic Rate of Endotherms Be Explained by Biophysical Modeling? Response to "A New Model for the Body Size–Metabolism Relationship― Physiological and Biochemical Zoology, 2011, 84, 107-110.	0.6	9
133	A Manipulative Test of Competing Theories for Metabolic Scaling. American Naturalist, 2011, 178, 746-754.	1.0	65
134	Discontinuous Gas Exchange in Insects: Is It All in Their Heads?. American Naturalist, 2011, 177, 130-134.	1.0	52
135	Metabolic rate throughout the annual cycle reveals the demands of an Arctic existence in Great Cormorants. Ecology, 2011, 92, 475-486.	1.5	31
136	The relationship between sea surface temperature and population change of Great Cormorants <i>Phalacrocorax carbo</i> breeding near Disko Bay, Greenland. Ibis, 2011, 153, 170-174.	1.0	13
137	Greater energy stores enable flightless moulting geese to increase resting behaviour. Ibis, 2011, 153, 868-874.	1.0	13
138	The heart rate method for estimating metabolic rate: Review and recommendations. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 158, 287-304.	0.8	187
139	Allometric estimation of metabolic rates in animals. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 158, 346-357.	0.8	65
140	Indications of phenotypic plasticity in moulting birds: captive geese reveal adaptive changes in mineralisation of their long bones during wing moult. Journal of Ornithology, 2011, 152, 1055-1061.	0.5	9
141	Scaling of resting and maximum hopping metabolic rate throughout the life cycle of the locust <i>Locusta migratoria</i> . Journal of Experimental Biology, 2011, 214, 3218-3224.	0.8	29
142	Influence of elevated temperature on metabolism during aestivation: implications for muscle disuse atrophy. Journal of Experimental Biology, 2011, 214, 3782-3789.	0.8	17
143	Regulation of gas exchange and haemolymph pH in the cockroach Nauphoeta cinerea. Journal of Experimental Biology, 2011, 214, 3062-3073.	0.8	42
144	Assessing the Validity of the Accelerometry Technique for Estimating the Energy Expenditure of Diving Double-Crested Cormorants <i>Phalacrocorax auritus</i> . Physiological and Biochemical Zoology, 2011, 84, 230-237.	0.6	34

#	Article	IF	CITATIONS
145	Using light as a lure is an efficient predatory strategy in Arachnocampa flava, an Australian glowworm. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 181, 477-86.	0.7	13
146	There is no single p. Nature, 2010, 464, 691-693.	13.7	38
147	Measuring Energetics and Behaviour Using Accelerometry in Cane Toads Bufo marinus. PLoS ONE, 2010, 5, e10170.	1.1	57
148	Environmental modulation of metabolic allometry in ornate rainbowfish <i>Rhadinocentrus ornatus</i> . Biology Letters, 2010, 6, 136-138.	1.0	22
149	Activity patterns of the southern hairy-nosed wombat (Lasiorhinus latifrons) (Marsupialia:Vombatidae) in the South Australian Murraylands. Australian Mammalogy, 2010, 32, 39.	0.7	10
150	Predicting the rate of oxygen consumption from heart rate in barnacle geese <i>Branta leucopsis</i> : effects of captivity and annual changes in body condition. Journal of Experimental Biology, 2009, 212, 2941-2948.	0.8	23
151	Testing the use/disuse hypothesis: pectoral and leg muscle changes in captive barnacle geese Branta leucopsis during wing moult. Journal of Experimental Biology, 2009, 212, 2403-2410.	0.8	28
152	Endothermy of dynastine scarab beetles (<i>Cyclocephala colasi</i>)associated with pollination biology of a thermogenic arum lily(<i>Philodendron solimoesense</i>). Journal of Experimental Biology, 2009, 212, 2960-2968.	0.8	40
153	Cockroaches breathe discontinuously to reduce respiratory water loss. Journal of Experimental Biology, 2009, 212, 2773-2780.	0.8	49
154	Discontinuous ventilation in the rhinoceros beetle Oryctes nasicornis. Journal of Thermal Analysis and Calorimetry, 2009, 95, 743-747.	2.0	8
155	Evaluating the prudence of parents: daily energy expenditure throughout the annual cycle of a freeâ€ranging bird, the macaroni penguin <i>Eudyptes chrysolophus</i> . Journal of Avian Biology, 2009, 40, 529-538.	0.6	68
156	PHYLOGENETICALLY INFORMED ANALYSIS OF THE ALLOMETRY OF MAMMALIAN BASAL METABOLIC RATE SUPPORTS NEITHER GEOMETRIC NOR QUARTER-POWER SCALING. Evolution; International Journal of Organic Evolution, 2009, 63, 2658-2667.	1.1	150
157	Energetic consequences of plunge diving in gannets. Endangered Species Research, 2009, 10, 269-279.	1.2	34
158	Pedestrian locomotion energetics and gait characteristics of a diving bird, the great cormorant, Phalacrocorax carbo. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 745-754.	0.7	25
159	Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: Tests with an easy model species, Homo sapiens. Zoology, 2008, 111, 231-241.	0.6	92
160	Wingâ€spreading, wingâ€drying and foodâ€warming in great cormorants <i>Phalacrocorax carbo</i> . Journal of Avian Biology, 2008, 39, 576-578.	0.6	4
161	Vision and the foraging technique of Great Cormorants <i>Phalacrocorax carbo</i> : pursuit or closeâ€quarter foraging?. Ibis, 2008, 150, 485-494.	1.0	43
162	Behavioural strategies of cormorants (Phalacrocoracidae) foraging under challenging light conditions. Ibis, 2008, 150, 231-239.	1.0	26

#	Article	IF	CITATIONS
163	Allometric scaling of maximum metabolic rate: the influence of temperature. Functional Ecology, 2008, 22, 616-623.	1.7	29
164	In situ measurement of calling metabolic rate in an Australian mole cricket, Gryllotalpa monanka. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 150, 217-221.	0.8	14
165	Scaling of gas exchange cycle frequency in insects. Biology Letters, 2008, 4, 127-129.	1.0	14
166	Effect of aerial O2 partial pressure on bimodal gas exchange and air-breathing behaviour in Trichogaster leeri. Journal of Experimental Biology, 2007, 210, 2311-2319.	0.8	29
167	Evolutionary responses of discontinuous gas exchange in insects. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8357-8361.	3.3	92
168	Basal metabolic rate of birds is associated with habitat temperature and precipitation, not primary productivity. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 287-293.	1.2	134
169	Annual changes in body mass and resting metabolism in captive barnacle geese (Branta leucopsis): the importance of wing moult. Journal of Experimental Biology, 2007, 210, 1391-1397.	0.8	86
170	Pouch young removal and return to oestrus in wild southern hairy-nosed wombats (Lasiorhinus) Tj ETQq0 0 0 rg	BT (Overlo	ock,10 Tf 50 4
171	Growth and development of the southern hairy-nosed wombat, Lasiorhinus latifrons (Vombatidae). Australian Journal of Zoology, 2007, 55, 309.	0.6	16
172	ALLOMETRIC EXPONENTS DO NOT SUPPORT A UNIVERSAL METABOLIC ALLOMETRY. Ecology, 2007, 88, 315-323.	1.5	215
173	When cormorants go fishing: the differing costs of hunting for sedentary and motile prey. Biology Letters, 2007, 3, 574-576.	1.0	13
174	Vision and Foraging in Cormorants: More like Herons than Hawks?. PLoS ONE, 2007, 2, e639.	1.1	65
175	Onshore energetics in penguins: Theory, estimation and ecological implications. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 147, 1009-1014.	0.8	5
176	The scaling and temperature dependence of vertebrate metabolism. Biology Letters, 2006, 2, 125-127.	1.0	341
177	Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. Journal of Animal Ecology, 2006, 75, 1081-1090.	1.3	560
178	Respirometry: Anhydrous Drierite Equilibrates with Carbon Dioxide and Increases Washout Times. Physiological and Biochemical Zoology, 2006, 79, 977-980.	0.6	37
179	Balancing the competing requirements of saltatorial and fossorial specialisation: burrowing costs in the spinifex hopping mouse, Notomys alexis. Journal of Experimental Biology, 2006, 209, 2103-2113.	0.8	22
	Sample size and mass range effects on the allometric exponent of basal metabolic rate. Comparative		

180Sample size and mass range effects on the allometric exponent of basal metabolic rate. Comparative
Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2005, 142, 74-78.0.854

#	Article	IF	CITATIONS
181	Allometric estimation of metabolic rate from heart rate in penguins. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2005, 142, 478-484.	0.8	19
182	Visual fields in Flamingos: chick-feeding versus filter-feeding. Die Naturwissenschaften, 2005, 92, 351-354.	0.6	26
183	The allometry of burrow geometry. Journal of Zoology, 2005, 265, 395-403.	0.8	62
184	Seasonal changes in the testis, accessory glands and ejaculate characteristics of the southern hairy-nosed wombat, Lasiorhinus latifrons (Marsupialia: Vombatidae). Journal of Zoology, 2005, 266, 95-104.	0.8	28
185	Cross-fostering, growth and reproductive studies in the brush-tailed rock-wallaby, Petrogale penicillata (Marsupialia:Macropodidae): efforts to accelerate breeding in a threatened marsupial species. Australian Journal of Zoology, 2005, 53, 313.	0.6	35
186	Allometric scaling of mammalian metabolism. Journal of Experimental Biology, 2005, 208, 1611-1619.	0.8	352
187	Effects of long-term implanted data loggers on macaroni penguinsEudyptes chrysolophus. Journal of Avian Biology, 2004, 35, 370-376.	0.6	23
188	Does Basal Metabolic Rate Contain a Useful Signal? Mammalian BMR Allometry and Correlations with a Selection of Physiological, Ecological, and Lifeâ€History Variables. Physiological and Biochemical Zoology, 2004, 77, 929-941.	0.6	151
189	Heat reward for insect pollinators. Nature, 2003, 426, 243-244.	13.7	189
190	Mammalian basal metabolic rate is proportional to body mass2/3. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4046-4049.	3.3	645
191	The Influence of Foraging Mode and Arid Adaptation on the Basal Metabolic Rates of Burrowing Mammals. Physiological and Biochemical Zoology, 2003, 76, 122-134.	0.6	47
192	Allometric Analysis beyond Heterogeneous Regression Slopes: Use of the Johnsonâ€Neyman Technique in Comparative Biology. Physiological and Biochemical Zoology, 2003, 76, 135-140.	0.6	70
193	The energetics of burrow excavation by the inland robust scorpion, Urodacus yaschenkoi (Birula,) Tj ETQq1 1 0.	784314 rg 0.6	BT /Qverloc