Pedro Chamorro-Posada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2490084/publications.pdf

Version: 2024-02-01

143 papers 1,639 citations

304368 22 h-index 377514 34 g-index

144 all docs

144 docs citations

144 times ranked 1352 citing authors

#	Article	IF	Citations
1	On a CVD-formed carbon nitrogen (C ₃ N) film doped with Cu and Zn. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 306-313.	1.0	2
2	Asymmetric Concentric Microring Resonator Label-Free Biosensors. Photonics, 2022, 9, 27.	0.9	4
3	From urea to melamine cyanurate: Study of a class of thermal condensation routes for the preparation of graphitic carbon nitride. Journal of Solid State Chemistry, 2022, 310, 123071.	1.4	9
4	Experimental and theoretical investigations on a CVD grown thin film of polymeric carbon nitride and its structure. Diamond and Related Materials, 2021, 111, 108169.	1.8	5
5	A solid-state glucose sensor based on Cu and Fe–doped carbon nitride. Materials Chemistry and Physics, 2021, 258, 124023.	2.0	9
6	Design and characterization of silicon nitride ultracompact integrated polarizers using bent asymmetric coupled waveguides. Optics Letters, 2021, 46, 609.	1.7	2
7	Design and Characterization of Q-Enhanced Silicon Nitride Racetrack Micro-Resonators. Journal of Lightwave Technology, 2021, 39, 2917-2923.	2.7	5
8	Soliton refraction and Goos–Hächen shifts at diffusion step nonlocal interfaces. Journal of Optics (United Kingdom), 2020, 22, 015502.	1.0	1
9	Quadratic Bessel-Gauss beams and the azimuthal angular spectra of Gaussian astigmatic beams. Physical Review A, 2020, 102, .	1.0	2
10	Solar light-driven reduction of crystal violet by a composite of g-C ₃ N ₄ , β-Ag ₂ Se, γ-Fe ₂ O ₃ and graphite. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 533-540.	1.0	1
11	Photodegradation of Direct Blue 1 azo dye by polymeric carbon nitride irradiated with accelerated electrons. Materials Chemistry and Physics, 2019, 237, 121878.	2.0	9
12	Methylene blue-carbon nitride system as a reusable air-sensor. Materials Chemistry and Physics, 2019, 231, 351-356.	2.0	4
13	Comparison of the activities of C2N and BCNO towards Congo red degradation. Materials Chemistry and Physics, 2019, 221, 397-408.	2.0	13
14	Radiation in bent asymmetric coupled waveguides. Applied Optics, 2019, 58, 4450.	0.9	5
15	Ultracompact integrated polarizers using bent asymmetric coupled waveguides. Optics Letters, 2019, 44, 2040.	1.7	6
16	Molecular dynamics simulations of nanosheets of polymeric carbon nitride and comparison with experimental observations. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 137-144.	1.0	9
17	Hidden Probe Attacks on Ultralong Fiber Laser Key Distribution Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-9.	1.9	7
18	A Study of the Terahertz Spectra of Crystalline Materials (Polyethylene, Poly(Vinylidene Fluoride)) Tj ETQq0 0 0 552-559.	rgBT /Over 0.3	lock 10 Tf 50 6 4

552-559.

#	Article	IF	Citations
19	Characterization of Microring Filters for Differential Group Delay Applications. Journal of Lightwave Technology, 2017, 35, 2943-2947.	2.7	O
20	Nitrogen-carbon graphite-like semiconductor synthesized from uric acid. Carbon, 2017, 121, 368-379.	5.4	23
21	A plug'n'play WiFi surface-mount dual-loop antenna. HardwareX, 2017, 1, 46-53.	1.1	1
22	Q -enhanced racetrack microresonators. Optics Communications, 2017, 387, 70-78.	1.0	12
23	Dual-switching behavior of nonlocal interfaces. Physical Review A, 2017, 95, .	1.0	2
24	Photocatalytic activity of a new composite material of Fe (III) oxide nanoparticles wrapped by a matrix of polymeric carbon nitride and amorphous carbon. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 630-636.	1.0	12
25	A Study of the Far Infrared Spectrum of N-Acetyl-D-Glucosamine Using THz-TDS, FTIR, and Semiempirical Quantum Chemistry Methods. Journal of Spectroscopy, 2016, 2016, 1-7.	0.6	4
26	A simple method for estimating the fractal dimension from digital images: The compression dimension. Chaos, Solitons and Fractals, 2016, 91, 562-572.	2.5	19
27	Copper complexes within the supramolecular solid structure of cyanuric acid and melamine. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 688-697.	1.0	5
28	Helmholtz solitons in diffusive Kerr-type media. Physical Review A, 2016, 93, .	1.0	3
29	Synthesis and characterization of Cu-doped polymeric carbon nitride. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 171-180.	1.0	14
30	Windowing of THz time-domain spectroscopy signals: A study based on lactose. Optics Communications, 2016, 366, 386-396.	1.0	33
31	THz TDS study of several sp2 carbon materials: Graphite, needle coke and graphene oxides. Carbon, 2016, 98, 484-490.	5.4	44
32	Simple quantum password checking. Physical Review A, 2015, 91, .	1.0	0
33	Experimental and Theoretical Studies on the Structure and Photoluminescent Properties of New Mononuclear and Homodinuclear Europium(III) <i>\hat{l}^2</i> Diketonate Complexes. Advances in Condensed Matter Physics, 2015, 2015, 1-11.	0.4	5
34	Repeaters in Relativistic Communications. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2015, 1, 158-163.	1.4	2
35	Quantum Spread Spectrum Multiple Access. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 30-36.	1.9	8
36	Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium(III) complex with acetylacetone and bathophenanthroline ligands. Journal of Luminescence, 2015, 162, 41-49.	1.5	14

#	Article	IF	Citations
37	Secure Communication in the Twin Paradox. Foundations of Physics, 2015, 45, 1433-1453.	0.6	1
38	Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate. Journal of Solid State Chemistry, 2015, 226, 170-178.	1.4	29
39	Group Delay Control in Longitudinal Offset Coupled Resonator Optical Waveguides. Journal of Lightwave Technology, 2015, 33, 1703-1707.	2.7	1
40	Synthesis, molecular modelling and NLO properties of new ytterbium(iii) complexes with vildagliptin. Optical Materials Express, 2015, 5, 503.	1.6	3
41	On the asymptotic evolution of finite energy Airy wave functions. Optics Letters, 2015, 40, 2850.	1.7	2
42	Synthesis, structural modelling and luminescence of a novel erbium(III) complex with 2,4-nonanedione and 2,2′-bipyridine ligands for chitosan matrices doping. Optical Materials, 2015, 41, 139-142.	1.7	8
43	Helmholtz non-paraxial beam propagation method: An assessment. Journal of Nonlinear Optical Physics and Materials, 2014, 23, 1450040.	1.1	3
44	Gap solitons and symmetry breaking in parity-time symmetric microring coupled resonator optical waveguides. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2728.	0.9	2
45	Singleâ€lon Magnetism in a Luminescent Er ³⁺ βâ€Diketonato Complex with Multiple Relaxation Mechanisms. European Journal of Inorganic Chemistry, 2014, 2014, 511-517.	1.0	28
46	Study of Optimal All-Pass Microring Resonator Delay Lines With a Genetic Algorithm. Journal of Lightwave Technology, 2014, 32, 1477-1481.	2.7	9
47	Phase Asymmetry Effect in Longitudinal Offset Coupled Resonator Optical Waveguides. IEEE Photonics Technology Letters, 2014, 26, 1489-1491.	1.3	2
48	2D to 3D transition of polymeric carbon nitride nanosheets. Journal of Solid State Chemistry, 2014, 219, 232-241.	1.4	20
49	Efficient parallel implementation of the nonparaxial beam propagation method. Parallel Computing, 2014, 40, 394-407.	1.3	4
50	Bundled solitons collision-induced frequency shifts in multiple-channel WDM dispersion managed systems. Optics Communications, 2014, 332, 1-8.	1.0	1
51	X-ray analysis, molecular modeling and NIR-luminescence of erbium(III) 2,4-octanedionate complexes with N,N-donors. Polyhedron, 2014, 81, 485-492.	1.0	5
52	Highly fluorinated erbium(III) complexes for emission in the C-band. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 292, 16-25.	2.0	17
53	Widely varying giant Goos–Hächen shifts from Airy beams at nonlinear interfaces. Optics Letters, 2014, 39, 1378.	1.7	23
54	Structure and NIR-luminescence of ytterbium(iii) beta-diketonate complexes with 5-nitro-1,10-phenanthroline ancillary ligand: assessment of chain length and fluorination impact. Dalton Transactions, 2013, 42, 13516.	1.6	38

#	Article	IF	CITATIONS
55	Scouting the spectrum for interstellar travellers. Acta Astronautica, 2013, 85, 12-18.	1.7	5
56	A SWAP gate for qudits. Quantum Information Processing, 2013, 12, 3625-3631.	1.0	28
57	Novel erbium(iii) complexes with 2,6-dimethyl-3,5-heptanedione and different N,N-donor ligands for ormosil and PMMA matrices doping. Journal of Materials Chemistry C, 2013, 1, 5701.	2.7	35
58	Charge Transport and Sensitized 1.5 \hat{l} /4m Electroluminescence Properties of Full Solution-Processed NIR-OLED based on Novel Er(III) Fluorinated \hat{l} 2-Diketonate Ternary Complex. Journal of Physical Chemistry C, 2013, 117, 10020-10030.	1.5	65
59	swap test and Hong-Ou-Mandel effect are equivalent. Physical Review A, 2013, 87, .	1.0	109
60	Nonparaxial soliton refraction at optical interfaces with & amp; $\#x03C7$; & lt; $x=0$, and $x=0$, amp; $\#x03C7$; & lt; $x=0$, and $x=0$, amp; $\#x03C7$; & lt; $x=0$, and $x=0$		0
61	THz spectroscopy of polymeric carbon nitride from melamine cyanurate. , 2013, , .		1
62	NIR-OLED (1.54 $\hat{1}$ /4m) emitting electroluminescent diode arrays based on Er-complexes manufactured by cost-effective method. Optica Pura Y Aplicada, 2013, 46, 257-263.	0.0	1
63	Modeling of racetrack-resonator add-drop filters with arbitrary nonlinear directional couplers. Optics Letters, 2012, 37, 2097.	1.7	2
64	Further generalizations of the Bateman solution. Novel wave beams and wave packets. , 2012, , .		1
65	Wave envelopes with second-order spatiotemporal dispersion. II. Modulational instabilities and dark Kerr solitons. Physical Review A, 2012, 86, .	1.0	11
66	Wave envelopes with second-order spatiotemporal dispersion. I. Bright Kerr solitons and cnoidal waves. Physical Review A, 2012, 86, .	1.0	21
67	Nonparaxial wave beams and packets with general astigmatism. Physical Review A, 2012, 85, .	1.0	22
68	Spatiotemporal Dispersion and Wave Envelopes with Relativistic and Pseudorelativistic Characteristics. Physical Review Letters, 2012, 108, 034101.	2.9	10
69	RACETRACK ADD-DROP RESONATOR WITH AN ORGANIC COVER FOR NONLINEAR SWITCHING ENHANCEMENT. Journal of Nonlinear Optical Physics and Materials, 2012, 21, 1250030.	1.1	3
70	Organic MEMS/NEMS-based high-efficiency 3D ITO-less flexible photovoltaic cells. Journal of Micromechanics and Microengineering, 2012, 22, 115015.	1.5	7
71	Nonlinear Bloch modes, optical switching and Bragg solitons in tightly coupled micro-ring resonator chains. Journal of Optics (United Kingdom), 2012, 14, 015205.	1.0	6
72	TIME DOMAIN ANALYSIS OF HELMHOLTZ SOLITON PROPAGATION USING THE TLM METHOD. Journal of Nonlinear Optical Physics and Materials, 2012, 21, 1250031.	1.1	5

#	Article	lF	CITATIONS
73	Counterfactual Rydberg gate for photons. Physical Review A, 2012, 85, .	1.0	5
74	Quantum computer networks with the orbital angular momentum of light. Physical Review A, 2012, 86, \cdot	1.0	21
75	Optimum amplifier location for wavelength division multiplexed dispersion managed solitons. Optics Communications, 2012, 285, 4488-4492.	1.0	3
76	MULTICHANNEL SOLITON COLLISIONS IN STRONGLY DISPERSION MANAGED WDM TRANSMISSION SYSTEMS. Journal of Nonlinear Optical Physics and Materials, 2012, 21, 1250034.	1.1	2
77	Helmholtz bright and black soliton splitting at nonlinear interfaces. Physical Review A, 2012, 85, .	1.0	13
78	Effects of the amplifier location in interchannel soliton collisions in periodic dispersion maps in the presence of third order dispersion. Mathematics and Computers in Simulation, 2012, 82, 1093-1101.	2.4	4
79	Propagation properties of strongly dispersion-managed soliton trains. Optics Communications, 2012, 285, 162-170.	1.0	10
80	Black and gray Helmholtz-Kerr soliton refraction. Physical Review A, 2011, 83, .	1.0	13
81	High-order micro-ring resonator transmission lines. , 2011, , .		0
82	Micro-Ring Chains With High-Order Resonances. Journal of Lightwave Technology, 2011, 29, 1514-1521.	2.7	13
83	Giant Goos–Hächen shifts and radiation-induced trapping of Helmholtz solitons at nonlinear interfaces. Optics Letters, 2011, 36, 3605.	1.7	15
84	General astigmatic nonparaxial wave beams and packets. , 2011, , .		1
85	Universal quantum computation with the orbital angular momentum of a single photon. Journal of Optics (United Kingdom), 2011, 13, 064022.	1.0	22
86	Interaction length of DM solitons in the presence of third order dispersion with loss and amplification. Discrete and Continuous Dynamical Systems - Series S, 2011, 4, 1069-1078.	0.6	7
87	Bistable dark solitons of a cubic-quintic Helmholtz equation. Physical Review A, 2010, 81, .	1.0	13
88	Pulsewidth evolution and blending rate of strongly DM interacting solitons. , 2010, , .		0
89	Refraction of power-law spatial solitons & amp; #x2014; The Helmholtz-Snell law., 2010,,.		0
90	HELMHOLTZ SOLITONS IN OPTICAL MATERIALS WITH A DUAL POWER-LAW REFRACTIVE INDEX. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 389-405.	1.1	11

#	Article	IF	Citations
91	The Grover energy transfer algorithm for relativistic speeds. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 455301.	0.7	O
92	Helmholtz algebraic solitons. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 085212.	0.7	12
93	Dark solitons at nonlinear interfaces. Optics Letters, 2010, 35, 1347.	1.7	15
94	Refraction of grey solitons at defocusing Kerr interfaces. , 2010, , .		0
95	New coupled micro-ring resonator structures and laser arrays. , 2010, , .		O
96	Helmholtz dark solitons at nonlinear defocusing interfaces. , 2010, , .		O
97	Nonlinear interfaces: intrinsically nonparaxial regimes and effects. Journal of Optics, 2009, 11, 054015.	1.5	18
98	Optical CNOT gates with Quantum Interrogation. , 2009, , .		1
99	Superluminal propagation in resonant dissipative media. Optics Communications, 2009, 282, 1095-1098.	1.0	3
100	Fast and slow light in zigzag microring resonator chains. Optics Letters, 2009, 34, 626.	1.7	17
101	Bistable Helmholtz bright solitons in saturable materials. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2323.	0.9	39
102	On a faster parallel implementation of the split-step Fourier method. Parallel Computing, 2008, 34, 539-549.	1.3	4
103	Group velocity control in microring resonator chains in the presence of gain or loss. , 2008, , .		O
104	Interchannel soliton collisions in periodic dispersion maps in the presence of third order dispersion with loss and amplification. , 2008 , , .		0
105	Quantum multiplexing with the orbital angular momentum of light. Physical Review A, 2008, 78, .	1.0	42
106	Interchannel Soliton Collisions in Periodic Dispersion Maps in the Presence of Third Order Dispersion. Journal of Nonlinear Mathematical Physics, 2008, 15, 137.	0.8	25
107	Helmholtz bright and boundary solitons. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 1545-1560.	0.7	32
108	Snell's law for Kerr bright and dark solitons. , 2007, , .		0

#	Article	IF	CITATIONS
109	Helmholtz solitons in power-law optical materials. Physical Review A, 2007, 76, .	1.0	19
110	Helmholtz bright and boundary solitons. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 8601-8601.	0.7	7
111	Helmholtz solitons at nonlinear interfaces. Optics Letters, 2007, 32, 1126.	1.7	34
112	Active control and stability in microring resonator chains. Optics Express, 2007, 15, 3177.	1.7	10
113	Bistable Helmholtz solitons in cubic-quintic materials. Physical Review A, 2007, 76, .	1.0	25
114	Korteweg-de Vries description of Helmholtz–Kerr dark solitons. Journal of Physics A, 2006, 39, 15355-15363.	1.6	2
115	Helmholtz-Manakov solitons. Physical Review E, 2006, 74, 066612.	0.8	20
116	Delayed Commutation in Quantum Computer Networks. Physical Review Letters, 2006, 97, 110502.	2.9	10
117	TLM Analysis of Multimode Interference Devices. Fiber and Integrated Optics, 2006, 25, 1-10.	1.7	4
118	Spatial Kerr soliton collisions at arbitrary angles. Physical Review E, 2006, 74, 036609.	0.8	39
119	<title>Exact analytical Helmholtz bright and dark solitons</title> ., 2004, , .		0
120	Interaction of Kerr spatial solitons at arbitrary angles. , 2004, , .		0
121	A modified imaginary distance BPM for directly computing arbitrary vector modes of 3-D optical waveguides. Journal of Lightwave Technology, 2003, 21, 862-867.	2.7	9
122	Helmholtz dark solitons. Optics Letters, 2003, 28, 825.	1.7	40
123	Exact soliton solutions of the nonlinear Helmholtz equation: communication. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1216.	0.9	44
124	Non-paraxial beam propagation methods. Optics Communications, 2001, 192, 1-12.	1.0	57
125	Propagation properties of non-paraxial spatial solitons. Journal of Modern Optics, 2000, 47, 1877-1886.	0.6	33
126	Performance analysis of optical prefiltering-SCM systems by accurate spectral techniques. IEEE Photonics Technology Letters, 2000, 12, 85-87.	1.3	1

#	Article	IF	CITATIONS
127	Fast algorithm for studying the evolution of optical solitons under perturbations. IEEE Transactions on Magnetics, 1999, 35, 1558-1561.	1.2	4
128	Experimental demonstration of optical prefiltering in WDM-SCM optical networks employing ultraselective optical bandpass filter. Electronics Letters, 1999, 35, 318.	0.5	5
129	Non-paraxial solitons. Journal of Modern Optics, 1998, 45, 1111-1121.	0.6	67
130	Conceptual Difficulties in the Teaching of The Photodetection Process. International Journal of Electrical Engineering and Education, 1998, 35, 317-332.	0.4	0
131	Instability and chaos in a two-coupler fiber ring resonator. Fiber and Integrated Optics, 1995, 14, 331-335.	1.7	3
132	Volume Integral Formulation of Finite Difference Beam Propagation Method for Studying Planar Optical Waveguides. Journal of Modern Optics, 1995, 42, 491-496.	0.6	0
133	Modal analysis of optical waveguides using prony's method and bpm. Microwave and Optical Technology Letters, 1994, 7, 529-532.	0.9	4
134	Integrated waveguideâ€photodetector coupling by modal fitting. Microwave and Optical Technology Letters, 1994, 7, 795-798.	0.9	0
135	Exact analytical Helmholtz bright and dark solitons. , 0, , .		0
136	From maxwell's equations to new families of helmholtz solitons. , 0, , .		0
137	Variational approach to dispersion-managed soliton propagation under third-order dispersion effects. , 0, , .		0
138	Helmholtz-Manakov solitons. , 0, , .		1
139	Dispersion-managed soliton interactions in the presence of third-order dispersion. , 0, , .		2
140	Helmholtz solitons at nonlinear interfaces., 0, , .		5
141	Helmholtz solitons in non-Kerr media. , 0, , .		0
142	Non-paraxial solitons. , 0, .		4
143	On an iridescent film of carbon nitride grown on an aluminum sheet and composed of overlapped oak-leave shaped nanoparticles. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-8.	1.0	1