Levent Toppare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2489818/publications.pdf

Version: 2024-02-01

202 papers 4,403 citations

35 h-index 53 g-index

203 all docs

 $\begin{array}{c} 203 \\ \\ \text{docs citations} \end{array}$

times ranked

203

3518 citing authors

#	Article	IF	CITATIONS
1	Selenopheneâ€containing conjugated polymers for supercapacitor electrodes. Journal of Polymer Science, 2022, 60, 109-121.	2.0	6
2	Thieno[3,4]pyrroleâ€4,6â€dioneâ€Based Conjugated Polymers for Nonfullerene Organic Solar Cells. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	4
3	Multipurpose acetic acid functionalized carbazole derivatives: Synthesis, electrochemical properties and electrochromic device applications. Journal of Electroanalytical Chemistry, 2022, 908, 116108.	1.9	2
4	Investigation the effect of π bridge and side chain on photovoltaic properties of benzodithiophene and quinoxaline based conjugated polymers. European Polymer Journal, 2022, 169, 111141.	2.6	6
5	Effect of random copolymerization on the optical properties of selenophene and thieno[3,4-c]pyrrole-4,6-dione conjugated polymers. Microchemical Journal, 2022, 178, 107395.	2.3	3
6	Syntheses of novel fluorinated dibenzo[<i>a</i> , <i>c</i>]phenazine comprising polymers for electrochromic device applications. New Journal of Chemistry, 2022, 46, 14826-14839.	1.4	2
7	ProTOT: Synthesis of the missing member of the 3,4-chalcogen substituted bridged thiophenes and its utilization in donor-acceptor polymers. Polymer, 2021, 212, 123076.	1.8	7
8	Altering Electronic and Optical Properties of Novel Benzothiadiazole Comprising Homopolymers via π Bridges. Journal of the Electrochemical Society, 2021, 168, 036514.	1.3	7
9	A Nonionic Alcohol Soluble Polymer Cathode Interlayer Enables Efficient Organic and Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 8602-8611.	3.2	28
10	Effect of thiophene, 3-hexylthiophene, selenophene, and Thieno[3,2-b]thiophene spacers on OPV device performance of novel 2,1,3-benzothiadiazole based alternating copolymers. Journal of Electroanalytical Chemistry, 2021, 895, 115483.	1.9	4
11	Synthesis of selenophene substituted benzodithiophene and fluorinated benzothiadiazole based conjugated polymers for organic solar cell applications. Electrochimica Acta, 2021, 398, 139298.	2.6	8
12	Non-fullerene organic photovoltaics based on thienopyrroledione comprising random copolymers; effect of alkyl chains. Renewable Energy, 2021, 178, 202-211.	4.3	8
13	Fabrication of quantum dot-polymer composites and their electroanalytical applications. , 2021, , 271-306.		O
14	Multichromic Vanadium Pentoxide Thin Films Through Ultrasonic Spray Deposition. Journal of the Electrochemical Society, 2021, 168, 106511.	1.3	12
15	Light induced step-growth polymerization of Donor-Acceptor-Donor (DAD) type monomers based on thiophene – [1,2,5] Chalcogenazolo[3,4-f]-benzo [1,2,3] triazole – Thiophene. European Polymer Journal, 2021, 161, 110831.	2.6	7
16	Selenophene-bearing low-band-gap conjugated polymers: tuning optoelectronic properties via fluorene and carbazole as donor moieties. Polymer Bulletin, 2020, 77, 2443-2459.	1.7	9
17	Construction of amperometric biosensor modified with conducting polymer/carbon dots for the analysis of catechol. Journal of Polymer Science, 2020, 58, 3336-3348.	2.0	18
18	A comprehensive study: Theoretical and experimental investigation of heteroatom and substituent effects on frontier orbitals and polymer solar cell performances. Journal of Polymer Science, 2020, 58, 2792-2806.	2.0	11

#	Article	IF	CITATIONS
19	Synthesis and characterization of optical, electrochemical and photovoltaic properties of selenophene bearing benzodithiophene based alternating polymers. Journal of Electroanalytical Chemistry, 2020, 862, 114014.	1.9	8
20	Synthesis, electrochromic characterization and solar cell application of thiophene bearing alternating copolymers with azobenzene and coumarin subunits. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 589-599.	1.2	4
21	Tailoring optoelectronic properties of thieno[3,2-b]thiophene comprising homopolymers via electron acceptor moieties: thienopyrrolodione, 2,1,3-benzoselenadiazole, isoindigo. Journal of Electroanalytical Chemistry, 2020, 873, 114372.	1.9	1
22	Synthesis of a Multifunctional Quinoxaline and Benzodithiophene Bearing Polymer and Its Electrochromic Device Applications. Macromolecular Chemistry and Physics, 2020, 221, 1900470.	1.1	13
23	The impact of [1,2,5]chalcogenazolo[3,4â€ <scp><i>f</i></scp>]â€benzo[1,2,3]triazole structure on the optoelectronic properties of conjugated polymers. Journal of Polymer Science, 2020, 58, 956-968.	2.0	13
24	A newly designed anthracene and isoindigo based polymer: synthesis, electrochemical characterization and biosensor applications. New Journal of Chemistry, 2019, 43, 13979-13984.	1.4	6
25	A novel multi-electrochromic polymer based on selenophene and benzotriazole via electrochemical and chemical polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 197-205.	1.2	4
26	A promising enzyme anchoring probe for selective ethanol sensing in beverages. International Journal of Biological Macromolecules, 2019, 133, 1228-1235.	3.6	9
27	Conjugated polymers with benzothiadiazole and benzotriazole moieties for polymer solar cells. Renewable Energy, 2019, 139, 1184-1193.	4.3	19
28	Thiadiazoloquinoxaline and benzodithiophene bearing polymers for electrochromic and organic photovoltaic applications. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 937-946.	0.8	5
29	Syntheses and Characterization of Benzotriazole, Thienopyrroledione, and Benzodithiophene Containing Conjugated Random Terpolymers for Organic Solar Cells. Journal of the Electrochemical Society, 2019, 166, H849-H859.	1.3	5
30	Fabrication of a Novel Polymeric Scaffold for Amperometric Laccase Biosensor. Journal of Polymer Science Part A, 2019, 57, 2333-2339.	2.5	8
31	A new NIR absorbing DPP-based polymer for thick organic solar cells. Journal of Materials Chemistry C, 2018, 6, 2957-2961.	2.7	22
32	Fabrication of a promising immobilization platform based on electrochemical synthesis of a conjugated polymer. Colloids and Surfaces B: Biointerfaces, 2018, 167, 392-396.	2.5	4
33	Multipurpose selenophene containing conjugated polymers for optoelectronic applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 133-139.	1.2	14
34	Triphenylamine Based Random Copolymers: The Effect of Molecular Weight on Performance of Solar Cell and Optoelectronic Properties. Macromolecular Chemistry and Physics, 2017, 218, 1600544.	1.1	9
35	Random copolymers of 1,2,3-benzotriazole and alkoxy-modified naptho[2,3-b:3,4-bâ \in 2]dithiophene: Syntheses, characterization and optoelectronic properties. Journal of Electroanalytical Chemistry, 2017, 786, 50-57.	1.9	2
36	A new highâ€performance blue to transmissive electrochromic material and use of silver nanowire network electrodes as substrates. Journal of Polymer Science Part A, 2017, 55, 1680-1686.	2.5	24

#	Article	IF	CITATIONS
37	Simultaneous and Sequential Synthesis of Polyaniline- <i>g</i> poly(ethylene glycol) by Combination of Oxidative Polymerization and CuAAC Click Chemistry: A Water-Soluble Instant Response Glucose Biosensor Material. Macromolecules, 2017, 50, 1824-1831.	2.2	22
38	Silver Nanowire/Conducting Polymer Nanocomposite Electrochromic Supercapacitor Electrodes. Journal of the Electrochemical Society, 2017, 164, A721-A727.	1.3	39
39	Paper Based Glucose Biosensor Using Graphene Modified with a Conducting Polymer and Gold Nanoparticles. Journal of the Electrochemical Society, 2017, 164, G59-G64.	1.3	32
40	A triazoloquinoxaline and benzodithiophene bearing low band gap copolymer for electrochromic and organic photovoltaic applications. Synthetic Metals, 2017, 228, 111-119.	2.1	13
41	Poly(o-aminophenol) prepared by Cu(<scp>ii</scp>) catalyzed air oxidation and its use as a bio-sensing architecture. Polymer Chemistry, 2017, 8, 3881-3888.	1.9	15
42	Construction and amperometric biosensing performance of a novel platform containing carbon nanotubes-zinc phthalocyanine and a conducting polymer. International Journal of Biological Macromolecules, 2017, 96, 61-69.	3.6	35
43	Synthesis of bistriphenylamine―and benzodithiopheneâ€based random conjugated polymers for organic photovoltaic applications. Journal of Polymer Science Part A, 2017, 55, 3705-3715.	2.5	7
44	Quaternized Polymer–Single-Walled Carbon Nanotube Scaffolds for a Chemiresistive Glucose Sensor. ACS Sensors, 2017, 2, 1123-1127.	4.0	32
45	Polymerization and biosensor application of water soluble peptide-SNS type monomer conjugates. Journal of Materials Chemistry B, 2017, 5, 7384-7392.	2.9	12
46	Enhancing the power conversion efficiency of polymer solar cells via selection of quinoxaline substituents. New Journal of Chemistry, 2017, 41, 14635-14645.	1.4	1
47	A bio-sensing platform utilizing a conjugated polymer, carbon nanotubes and PAMAM combination. Journal of Electroanalytical Chemistry, 2017, 799, 370-376.	1.9	17
48	A novel approach for the fabrication of a flexible glucose biosensor: The combination of vertically aligned CNTs and a conjugated polymer. Food Chemistry, 2017, 220, 299-305.	4.2	59
49	Sequential Deposition of Electrochromic MoO3Thin Films with High Coloration Efficiency and Stability. Journal of the Electrochemical Society, 2017, 164, E565-E571.	1.3	16
50	Effect of substituent groups on quinoxaline-based random copolymers on the optoelectronic and photovoltaic properties. Polymer, 2016, 101, 208-216.	1.8	14
51	Syntheses and Electrochemical Characterization of Low Oxidation Potential Nitrogen Analogs of Pedot as Electrochromic Materials. Journal of the Electrochemical Society, 2016, 163, E293-E299.	1.3	20
52	2,1,3-Benzooxadiazole, thiophene and benzodithiophene based random copolymers for organic photovoltaics: thiophene versus thieno[3,2-b]thiophene as π-conjugated linkers. New Journal of Chemistry, 2016, 40, 10455-10464.	1.4	19
53	Incorporation of different conjugated linkers into low band gap polymers based on $5,6$ \$\text{6}\$Ebis(octyloxy)\$\text{\$\frac{1}{2}\$,1,3 benzooxadiazole for tuning optoelectronic properties. Journal of Polymer Science Part A, 2016, 54, 2459-2467.	2.5	9
54	Syntheses, electrochemical and spectroelectrochemical characterization of benzothiadiazole and benzoselenadiazole based random copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 475-483.	1.2	11

#	Article	IF	Citations
55	Comparative cell adhesion properties of cysteine extended peptide architectures. RSC Advances, 2016, 6, 2695-2702.	1.7	6
56	Synthesis and spectroelectrochemical characterization of multi-colored novel poly(3,6-dithienylcarbazole) derivatives containing azobenzene and coumarin chromophore units. Electrochimica Acta, 2016, 196, 140-152.	2.6	19
57	Preparation and Characterization of a Novel Solid-Phase Microextraction Material for Application to the Determination of Pesticides. Analytical Letters, 2016, 49, 907-916.	1.0	1
58	Electrochemical Properties of Perylene Diimide (PDI) and Benzotriazole (Btz) Bearing Conjugated Polymers to Investigate the Effect of π-Bridge on Electrochemical Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 1-9.	1.2	10
59	Novel poly(2,5-dithienylpyrrole) (PSNS) derivatives functionalized with azobenzene, coumarin and fluorescein chromophore units: spectroelectrochemical properties and electrochromic device applications. New Journal of Chemistry, 2015, 39, 3371-3379.	1.4	19
60	Syntheses and Optical Properties of Perfluorophenyl Containing Benzimidazole Derivatives: The Effect of Donor Units. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 510-516.	1.2	3
61	The effect of the different donor units on fluorescent conjugated polymers containing 2,1,3-benzooxadiazole as the acceptor unit. Journal of Electroanalytical Chemistry, 2015, 751, 80-89.	1.9	20
62	Selenophene as a Bridge in Molecular Architecture of Benzotriazole Containing Conjugated Copolymers to Gain Insight on Optical and Electrochemical Properties of Polymers. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1294-1306.	0.8	6
63	Synthesis of a benzotriazole bearing alternating copolymer for organic photovoltaic applications. New Journal of Chemistry, 2015, 39, 6623-6630.	1.4	19
64	Synthesis and Characterization of Thiophene and Thieno[3,2-b]thiophene Containing Conjugated Polymers. Journal of the Electrochemical Society, 2015, 162, G75-G81.	1.3	14
65	Silafluoreneâ€based polymers for electrochromic and polymer solar cell applications. Journal of Polymer Science Part A, 2015, 53, 1541-1547.	2.5	24
66	A Novel Nearâ€IR Effective Pyreneâ€Based Donor–Acceptor Electrochrome. Macromolecular Chemistry and Physics, 2015, 216, 829-836.	1.1	11
67	A novel architecture based on a conducting polymer and calixarene derivative: its synthesis and biosensor construction. RSC Advances, 2015, 5, 35940-35947.	1.7	36
68	Benzotriazole and benzodithiophene containing medium band gap polymer for bulk heterojunction polymer solar cell applications. Journal of Polymer Science Part A, 2015, 53, 528-535.	2.5	20
69	A Low Band Gap Benzimidazole Derivative and Its Copolymer with 3,4-Ethylenedioxythiophene for Electrochemical Studies. Journal of the Electrochemical Society, 2015, 162, H6-H14.	1.3	23
70	Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection. Food Chemistry, 2015, 172, 219-224.	4.2	32
71	Synthesis and Characterization of Conducting Copolymers of Thiophene Derivatives. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 210-216.	1.2	8
72	Development of an efficient immobilization matrix based on a conducting polymer and functionalized multiwall carbon nanotubes: synthesis and its application to ethanol biosensors. Journal of Materials Chemistry B, 2014, 2, 511-521.	2.9	50

#	Article	IF	CITATIONS
73	Development of a novel biosensor based on a conducting polymer. Talanta, 2014, 118, 84-89.	2.9	25
74	Enzyme immobilization in a photosensitive conducting polymer bearing azobenzene in the main chain. Polymer Bulletin, 2014, 71, 1827-1841.	1.7	18
75	Synthesis and spectroelectrochemistry of dithieno(3,2â€ <i>b</i> :2′,3′â€ <i>d</i>)pyrrole derivatives. Journal of Applied Polymer Science, 2014, 131, .	1.3	22
76	Synthesis and characterization of a novel polyphosphazene and its application to biosensor in combination with a conducting polymer. Sensors and Actuators B: Chemical, 2014, 201, 545-554.	4.0	25
77	Synthesis and electrochromic properties of triphenylamine containing copolymers: Effect of π-bridge on electrochemical properties. Journal of Polymer Science Part A, 2014, 52, 537-544.	2.5	35
78	Structure–property relations in donor–acceptor–donor type benzimidazole containing conjugated polymers. Journal of Materials Science, 2014, 49, 225-231.	1.7	6
79	A Novel and Effective Surface Design: Conducting Polymer∫β-Cyclodextrin Host–Guest System for Cholesterol Biosensor. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18290-18300.	4.0	49
80	Photoelectrochemical Biosensing Approach for Alcohol Determination by "Wiring―of Alcohol Oxidase Photonically with P(SNS-NH ₂)/AOx/CNT/[Ru(bpy) ₃] ²⁺ Modified Electrodes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 385-393.	1.2	4
81	Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polymer Chemistry, 2014, 5, 6295-6306.	1.9	52
82	Electrochemical and optical properties of 5,6-bis(octyloxy)-2,1,3 benzooxadiazole containing low band gap polymers. Synthetic Metals, 2014, 191, 19-27.	2.1	25
83	Dielectric and electrical properties of an organic device containing benzotriazole and fluorene bearing copolymer. Journal of Applied Polymer Science, 2013, 128, 1659-1664.	1.3	7
84	A sepiolite modified conducting polymer based biosensor. Colloids and Surfaces B: Biointerfaces, 2013, 111, 549-555.	2.5	14
85	Sprayâ€processable thiazolothiazoleâ€based copolymers with altered donor groups and their electrochromic properties. Journal of Polymer Science Part A, 2013, 51, 3901-3906.	2.5	30
86	Blend or copolymer? Spectroelectrochemical evidence of copolymerization and blending of two electrochromic monomers. Colloid and Polymer Science, 2013, 291, 767-772.	1.0	15
87	Direct pyrolysis mass spectrometry to investigate the effects of dopants on characteristics of polypyrrole and its copolymers. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1133-1138.	2.0	1
88	A New Amperometric Biosensor for Diamine: Use of a Conducting Polymer Layer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 914-922.	1.2	3
89	A novel promising biomolecule immobilization matrix: Synthesis of functional benzimidazole containing conducting polymer and its biosensor applications. Colloids and Surfaces B: Biointerfaces, 2013, 112, 74-80.	2.5	35
90	Optimizing the organic solar cell efficiency: Role of the active layer thickness. Solar Energy Materials and Solar Cells, 2013, 113, 100-105.	3.0	65

#	Article	IF	CITATIONS
91	Fused structures in the polymer backbone to investigate the photovoltaic and electrochromic properties of donor–acceptorâ€type conjugated polymers. Journal of Polymer Science Part A, 2013, 51, 1933-1941.	2.5	34
92	Effective and Functional Surface Design for Biosensing Applications Based on a Novel Conducting Polymer and PMMA/Clay Nanocomposite. Electroanalysis, 2013, 25, 1995-2006.	1.5	8
93	Synthesis of Poly(silyne-co-hydridocarbyne) for Silicon Carbide Production. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 923-930.	1.2	1
94	A New Amperometric Alcohol Oxidase Biosensor Based on Conducting Polymer of (4,7-Dithien-2-yl-2,) Tj ETQq0 0 185-190.	0 rgBT /0 1.2	verlock 10 T 8
95	Long Wavelength Photosensitizers for Diaryliodonium Salts Based on the 2-Benzyl-2 <i>H-benzo[<i>d][1,2,3]triazole Skeleton. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 445-449.</i></i>	1.2	4
96	A promising combination of benzotriazole and quinoxaline units: A new acceptor moiety toward synthesis of multipurpose donor–acceptor type polymers. Journal of Materials Chemistry, 2012, 22, 4687.	6.7	33
97	A novel functional conducting polymer: synthesis and application to biomolecule immobilization. Journal of Materials Chemistry, 2012, 22, 22517.	6.7	25
98	Functionalization of poly-SNS-anchored carboxylic acid with Lys and PAMAM: surface modifications for biomolecule immobilization/stabilization and bio-sensing applications. Analyst, The, 2012, 137, 4254.	1.7	32
99	Electrochromism in multichromic conjugated polymers: Thiophene and azobenzene derivatives on the main chain. Journal of Electroanalytical Chemistry, 2012, 665, 52-57.	1.9	18
100	Photoinduced Electron Transfer Reactions of Highly Conjugated Thiophenes for Initiation of Cationic Polymerization and Conjugated Polymer Formation. Macromolecules, 2012, 45, 7829-7834.	2.2	65
101	Multichromic benzimidazoleâ€containing polymers: Comparison of donor and acceptor unit effects. Journal of Polymer Science Part A, 2012, 50, 3499-3506.	2.5	21
102	Synthesis and characterization of conducting copolymer of <i>>Trans</i> à€1â€(4â€methylâ€3′â€thienyl)â€2â€(ferrocenyl)ethene with EDOT. Journal of Applied Polymer S 2012, 126, 808-814.	ci es ce,	24
103	The electrochemical synthesis of poly(methylcarbyne) for diamond film coatings. Journal of Applied Polymer Science, 2012, 124, 3626-3632.	1.3	4
104	Spray processable ambipolar benzotriazole bearing electrochromic polymers with multi-colored and transmissive states. Journal of Materials Chemistry, 2011, 21, 1804-1809.	6.7	53
105	Benzotriazole containing conjugated polymers for multipurpose organic electronic applications. Polymer Chemistry, 2011, 2, 1029-1043.	1.9	139
106	Synthesis and application of poly-SNS-anchored carboxylic acid: a novel functional matrix for biomolecule conjugation. Journal of Materials Chemistry, 2011, 21, 12337.	6.7	52
107	Dibenzophenazine derivatives as visible photosensitizers for diaryliodonium salts. Journal of Polymer Science Part A, 2011, 49, 3299-3303.	2.5	12
108	Syntheses and optoelectronic properties of quinoxaline polymers: The effect of donor unit. Journal of Polymer Science Part A, 2011, 49, 4065-4070.	2.5	17

#	Article	IF	CITATIONS
109	Neutralâ€State Green Conjugated Polymers from Pyrrole Bisâ€Substituted Benzothiadiazole and Benzoselenadiazole for Electrochromic Devices. Macromolecular Chemistry and Physics, 2011, 212, 799-805.	1.1	32
110	In Situ Spectroelectrochemical Study of Positively and Negatively Charged States in a Donor/Acceptor EDOT/Benzotriazoleâ€Based Polymer. Macromolecular Chemistry and Physics, 2011, 212, 2459-2466.	1.1	5
111	Synthesis and characterization of conducting copolymers of quinoxaline derivatives. Journal of Applied Polymer Science, 2011, 120, 1713-1719.	1.3	7
112	Gold nanoparticle modified conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine for potential use as a biosensing material. Food Chemistry, 2011, 127, 1317-1322.	4.2	47
113	Immobilization of Invertase in DAD Type Polymers: Combination of Benzothiadiazole Acceptor Unit and 3,4-Ethylenedioxythiophene and Thiophene Donor Units. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 855-861.	1.2	3
114	Design of Carbon Nanotube Modified Conducting Polymer for Biosensing Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 503-508.	1.2	16
115	A low-band gap conductive copolymer of bis-3-hexylthiophene substituted 4-tert-butylphenyl quinoxaline and 3,4-ethylenedioxythiophene. Journal of Solid State Electrochemistry, 2010, 14, 279-283.	1.2	8
116	Spectroelectrochemical and Photovoltaic Characterization of a Solutionâ€Processable nâ€andâ€p Type Dopable Pyrroleâ€Bearing Conjugated Polymer. Macromolecular Chemistry and Physics, 2010, 211, 2602-2610.	1.1	17
117	Electrochromic device and bulk heterojunction solar cell applications of poly 4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-dodecyl-2H-benzo[1,2,3]triazole (PBEBT). Solar Energy Materials and Solar Cells, 2010, 94, 1797-1802.	3.0	30
118	A quinoxaline derivative as a long wavelength photosensitizer for diaryliodonium salts. Journal of Polymer Science Part A, 2010, 48, 209-213.	2.5	56
119	Effect of conjugated core building block dibenzo[a,c]phenazine unit on Ï€â€conjugated electrochromic polymers: Redâ€shifted absorption. Journal of Polymer Science Part A, 2010, 48, 1714-1720.	2.5	26
120	Electrochemical and optical studies of furan and thieno[3,2â€ <i>b</i>)thiophene end capped benzotriazole derivatives. Journal of Polymer Science Part A, 2010, 48, 5603-5610.	2.5	45
121	Immobilization of Invertase in a Novel Proton Conducting Poly(vinylphosphonic acid) – poly(1-vinylimidazole) Network. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 639-646.	1.2	15
122	Processable Multipurpose Conjugated Polymer for Electrochromic and Photovoltaic Applications. Chemistry of Materials, 2010, 22, 2978-2987.	3.2	153
123	A green neutral state donor–acceptor copolymer for organic solar cells. Polymer Chemistry, 2010, 1, 1245.	1.9	10
124	Synthesis, Characterization and Optoelectrochemical Properties of Poly(2,5-di(thiophen-2-yl-)1-(4-(thiophen-3-yl)phenyl)-1H-pyrrole-co-EDOT). Designed Monomers and Polymers, 2010, 13, 261-275.	0.7	20
125	L-Dopa Synthesis on Conducting Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 209-214.	1.2	8
126	Green as it Gets; Donorâ€Acceptor type Polymers as the Key to Realization of RGB Based Polymer Display Devices. Macromolecular Symposia, 2010, 297, 79-86.	0.4	16

#	Article	lF	Citations
127	Immobilization of Invertase in Copolymer of 2,5-Di(thiophen-2-yl)-1-p-Tolyl-1H-Pyrrole with Pyrrole. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 739-744.	1.2	10
128	Electrochromic properties of a copolymer of 1â€4â€di[2,5â€di(2â€thienyl)â€1Hâ€1â€pyrrolyl]benzene with EDO Journal of Applied Polymer Science, 2009, 112, 1082-1087.	[「] 1.3	19
129	Poly(pyrrole) versus poly(3,4-ethylenedioxythiophene): amperometric cholesterol biosensor matrices. Journal of Solid State Electrochemistry, 2009, 13, 657-663.	1.2	19
130	Design of a microbial sensor using conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine. Sensors and Actuators B: Chemical, 2009, 137, 42-47.	4.0	57
131	The Synthesis of Complex Polymer Electrolytes Based on Alginic Acid and Poly(1-vinylimidazole) and Application in Tyrosinase Immobilization. Polymer Journal, 2009, 41, 46-50.	1.3	7
132	One polymer for all: benzotriazole containing donor–acceptor type polymer as a multi-purpose material. Chemical Communications, 2009, , 6768.	2.2	111
133	Synthesis and Characterization of Conducting Copolymers of Bisphenol A-Diglycidyl Ether with Thiophene Side-Groups and Pyrrole. Journal of Macromolecular Science - Pure and Applied Chemistry, 2009, 46, 584-590.	1.2	4
134	A new donorâ€acceptor type polymeric material from a thiophene derivative and its electrochromic properties. Journal of Polymer Science Part A, 2008, 46, 3723-3731.	2.5	34
135	Synthesis and characterization of waterâ€soluble oligosalicylaldehydeâ€sulfanilic acid and its Cu(II), Co(II), Pb(II) complexes. Journal of Applied Polymer Science, 2008, 110, 564-568.	1.3	9
136	A Unique Processable Green Polymer with a Transmissive Oxidized State for Realization of Potential RGBâ€Based Electrochromic Device Applications. Advanced Functional Materials, 2008, 18, 2026-2030.	7.8	120
137	Synthesis, characterization and optoelectrochemical properties of poly(1,6-bis(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexane) and its copolymer with EDOT. Journal of Electroanalytical Chemistry, 2008, 621, 55-61.	1.9	51
138	Both p- and n-type dopable polymer toward electrochromic applications. Organic Electronics, 2008, 9, 501-506.	1.4	35
139	Donorâ^Acceptor Polymer with Benzotriazole Moiety: Enhancing the Electrochromic Properties of the "Donor Unit― Chemistry of Materials, 2008, 20, 7510-7513.	3.2	143
140	Electrochromic Properties of †Trimeric' Thiopheneâ€pyrroleâ€thiophene Derivative Grown from Electrodeposited 6â€(2,5â€di(thiophenâ€2â€yl)â€1Hâ€pyrrolâ€1â€yl)hexanâ€1â€amine and its Copolymer. Jourr Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 164-171.	1 al. Øf	33
141	Characterization of Conducting Copolymer of Pyrrole via Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 201-204.	1.2	4
142	Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 1009-1014.	1.2	3
143	Facile Synthesis of Poly(hydridocarbyne): A Precursor to Diamond and Diamondâ€like Ceramics. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 358-363.	1.2	22
144	Electrochemical Synthesis of a Water-Soluble and Self-Doped Polythiophene Derivative. Designed Monomers and Polymers, 2008, 11, 309-317.	0.7	17

#	Article	IF	CITATIONS
145	Conducting Copolymers of Random and Block Copolymers of Electroactive and Liquid Crystalline Monomers with Pyrrole and Thiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 265-270.	1.2	7
146	Gas sensing property of a conducting copolymer. E-Polymers, 2007, 7, .	1.3	7
147	New, Highly Stable Electrochromic Polymers from 3,4-Ethylenedioxythiopheneâ^Bis-Substituted Quinoxalines toward Green Polymeric Materials. Chemistry of Materials, 2007, 19, 6247-6251.	3.2	119
148	Characterization and Potential Applications of Immobilized Glucose Oxidase and Polyphenol Oxidase. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 801-808.	1.2	2
149	Electrochromic Properties of Copolymer of Terephthalic Acid Bisâ€(thiophenâ€3â€ylâ€methyl) Thioester with Pyrrole. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 73-78.	1.2	5
150	Preparation of conductive polybenzoxazines by oxidative polymerization. Journal of Polymer Science Part A, 2007, 45, 999-1006.	2.5	48
151	Enhancing electrochromic properties of conducting polymers via copolymerization: Copolymer of 1â€(4â€fluorophenyl)â€2,5â€di(thiophenâ€2â€yl)â€1 <i>H</i> à€pyrrole with 3,4â€ethylene dioxythiophene. Jou Polymer Science Part A, 2007, 45, 4496-4503.	rn al sof	44
152	Characteristics of dual-type electrochromic devices based on poly(ethylene oxide) copolymers. Polymer International, 2007, 56, 674-678.	1.6	3
153	Synthesis and characterization of poly(N-(2-(thiophen-3-yl)methylcarbonyloxyethyl)maleimide) and its spectroelectrochemical properties. Journal of Applied Electrochemistry, 2007, 37, 729-735.	1.5	16
154	Phenol biosensor based on electrochemically controlled integration of tyrosinase in a redox polymer. Mikrochimica Acta, 2007, 159, 27-34.	2.5	52
155	Investigation of Copolymers of Thiopheneâ€Functionalized Polystyrene with Pyrrole by Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 655-665.	1.2	6
156	Synthesis, Characterization and Electrochromic Properties of Copolymer of Terephthalic Acid Bisâ€(thiophenâ€3â€ylâ€methyl) Thioester with Thiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2006, 43, 115-128.	1.2	7
157	Dual Type Complementary Colored Polymer Electrochromic Devices Based on Conducting Polymers of		

#	Article	IF	CITATIONS
163	Conducting copolymers of polytetrahydrofuran and their electrochromic properties. Journal of Applied Polymer Science, 2005, 95, 1014-1023.	1.3	14
164	Immobilization of invertase in conducting polypyrrole/PMMA-co-PMTM graft copolymers. Journal of Applied Polymer Science, 2005, 96, 502-507.	1.3	17
165	Photoinduced Polymerization of Thiophene Using Iodonium Salt. Macromolecular Chemistry and Physics, 2005, 206, 1178-1182.	1.1	82
166	Conducting Copolymers of 3-Methylthienyl Methacrylate and p-Vinylbenzyloxy Poly(ethyleneoxide) and Their Electrochromic Properties. Polymer Bulletin, 2005, 53, 193-201.	1.7	26
167	Synthesis and characterization of thiophene functionalized polystyrene copolymers and their electrochemical properties. Polymer International, 2005, 54, 1599-1605.	1.6	30
168	Synthesis and Characterization of Thiophen-3-yl Acetic Acid 4-Pyrrol-1-yl Phenyl Ester and its Conducting Polymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 713-730.	1.8	3
169	Characterization of Conducting Copolymers of Succinic Acid Bisâ€(â€4â€pyrrolâ€1â€ylâ€phenyl) Ester and Thiophene via Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 277-289.	1.2	2
170	Characterization of Conducting Copolymer of Thiophene via Pyrolysis Mass Spectrometry. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1639-1653.	1.2	1
171	Synthesis and Electrochromic Properties of a Symmetric Polythiophene Derivative: Decanedionic Acid Bisâ€(2â€thiopheneâ€3â€ylâ€ether)ester and its Copolymer with Thiophene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 451-462.	1.2	12
172	Characterization of doped polypyrrole–poly(methylthienyl methacrylate) films via pyrolysis mass spectrometry. Polymer International, 2004, 53, 926-930.	1.6	6
173	Characterization of the polymer of a dipyrrolyl monomer by pyrolysis mass spectrometry. Polymer International, 2004, 53, 1198-1204.	1.6	3
174	Synthesis and characterization of conducting copolymers of poly(vinyl alcohol) with thiophene side-groups and pyrrole. Polymer International, 2004, 53, 2138-2144.	1.6	36
175	Synthesis and Characterization of Conducting Copolymers of (S)-2-Methylbutyl-2-(3-thienyl)acetate with Pyrrole and Thiophene. Macromolecular Chemistry and Physics, 2003, 204, 1118-1122.	1.1	8
176	Electroactive macromonomers based on pyrrole and thiophene: a versatile route to conducting block and graft polymers. Polymer International, 2003, 52, 1573-1578.	1.6	39
177	Synthesis and Characterization of Conducting Copolymers of Menthyl Ester of 3-Thiophene Acetic Acid with Pyrrole. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 251-264.	1.2	4
178	Preparation of a Conducting Flexible Material from Silane Coupling Agent and Hydroxyl Terminated Polybutadiene Rubber by Hydrolysis and Condensation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 1081-1093.	1.2	1
179	IMMOBILIZATION OF YEAST CELLS IN SEVERAL CONDUCTING POLYMER MATRICES. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 183-197.	1.2	17
180	Synthesis of conducting polysiloxane — polypyrrole graft copolymers. Polymer Bulletin, 2002, 47, 501-508.	1.7	15

#	Article	IF	CITATIONS
181	Conducting graft copolymers of poly(3-methylthienyl methacrylate) with pyrrole and thiophene. Journal of Polymer Science Part A, 2002, 40, 4131-4140.	2.5	51
182	Synthesis of conducting graft copolymers of 2-(N-pyrrolyl)ethylvinyl ether with pyrrole. Designed Monomers and Polymers, 2001, 4, 53-65.	0.7	7
183	Fluoride Substitution on Polypyrrole during Electrochemical Synthesis in the Presence of N(Bu)4BF4. Macromolecular Rapid Communications, 2001, 22, 199-201.	2.0	4
184	PYROLYSIS OF BF4- DOPED POLYPYRROLE BY DIRECT INSERTION PROBE PYROLYSIS MASS SPECTROMETRY. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1141-1150.	1.2	10
185	Synthesis of conducting block and graft copolymers with polyether segments. Macromolecular Symposia, 2000, 157, 29-38.	0.4	8
186	CONDUCTING MULTIPHASE BLOCK COPOLYMERS OF POLYPYRROLE WITH POLYTETRAHYDROFURAN AND POLYTETRAHYDROFURAN-b-POLYSTYRENE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2000, 37, 277-291.	1.2	13
187	Block copolymers of thiophene-capped poly(methyl methacrylate) with pyrrole., 1999, 37, 4218-4225.		68
188	Immobilization of invertase in conducting thiophene-capped poly(methylmethacrylate)/polypyrrole matrices. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 1223-1235.	1.9	32
189	Conducting copolymers of polypyrrole/polytetrahydrofuran. Polymer Bulletin, 1998, 40, 639-645.	1.7	36
190	Polypyrrole Grafts Synthesized via Electrochemical Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 1998, 35, 1727-1739.	1.2	14
191	Conducting polymer composites: Polypyrrole and poly(vinyl chloride-vinyl acetate) copolymer. Journal of Applied Polymer Science, 1997, 64, 667-671.	1.3	42
192	X-ray photoelectron spectroscopic investigation of conducting polymer blends. Analytical and Bioanalytical Chemistry, 1996, 355, 387-389.	1.9	1
193	A Conducting Composite of Polythiophene: Synthesis and Characterization. Polymer International, 1996, 41, 237-244.	1.6	18
194	Conducting composites of polypyrrole with polytetramethylbisphenol A carbonate. Journal of Applied Polymer Science, 1996, 61, 1067-1075.	1.3	16
195	Effects of Ultrasonic Vibration on the Electroinitiated Copolymerisation of Styrene and Isoprene. British Polymer Journal, 1986, 18, 273-276.	0.7	3
196	Electroinitiated cationic polymerization of isoprene. Journal of Polymer Science, Part C: Polymer Letters, 1986, 24, 185-189.	0.7	11
197	Electro-copolymerisation of indene and styrene. British Polymer Journal, 1985, 17, 257-259.	0.7	6
198	Effects of applied potential on electroinitiated copolymerisation of \hat{l}_{\pm} -methylstyrene and \hat{l}_{\pm} -bromostyrene. British Polymer Journal, 1984, 16, 71-72.	0.7	3

#	Article	IF	CITATION
199	Electroinitiated and radiation-induced polymerisation of epoxycyclopentane. British Polymer Journal, 1984, 16, 102-104.	0.7	4
200	Electroinitiated copolymerizations involving indene, styrene, and substituted styrenes. Journal of Polymer Science, Polymer Letters Edition, 1984, 22, 297-300.	0.4	8
201	Radiation-induced and electroinitiated polymerisation of 1 , 2 -Epoxy- 4 -epoxyethylcyclohexane. British Polymer Journal, 1983 , 15 , 187 - 189 .	0.7	7
202	A correlation of anodic peak potentials with HOMO energies of various monomers. Die Makromolekulare Chemie, 1983, 184, 1661-1667.	1.1	16