Nina Maggi Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2489721/publications.pdf

Version: 2024-02-01

45317 53794 8,751 119 45 90 citations h-index g-index papers 120 120 120 9831 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geographic Object-Based Image Analysis – Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87, 180-191.	11.1	1,167
2	Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogrammetric Engineering and Remote Sensing, 2006, 72, 799-811.	0.6	632
3	A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogrammetric Engineering and Remote Sensing, 2012, 78, 75-84.	0.6	484
4	Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data. Photogrammetric Engineering and Remote Sensing, 2006, 72, 923-932.	0.6	431
5	Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PLoS ONE, 2013, 8, e77151.	2.5	282
6	Support vector machines for predicting distribution of Sudden Oak Death in California. Ecological Modelling, 2005, 182, 75-90.	2.5	251
7	Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Computers, Environment and Urban Systems, 2008, 32, 317-326.	7.1	230
8	Interactions Among Wildland Fires in a Long-Established Sierra Nevada Natural Fire Area. Ecosystems, 2009, 12, 114-128.	3.4	229
9	Tradeoffs between lidar pulse density and forest measurement accuracy. Remote Sensing of Environment, 2013, 130, 245-253.	11.0	202
10	Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1458-1463.	7.1	199
11	Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landscape Ecology, 2007, 22, 545-557.	4.2	196
12	Citizen Science in the Age of Neogeography: Utilizing Volunteered Geographic Information for Environmental Monitoring. Annals of the American Association of Geographers, 2012, 102, 1267-1289.	3.0	190
13	Delineating Individual Trees from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches. Remote Sensing, 2013, 5, 4163-4186.	4.0	166
14	Evaluating Tidal Marsh Sustainability in the Face of Sea-Level Rise: A Hybrid Modeling Approach Applied to San Francisco Bay. PLoS ONE, 2011, 6, e27388.	2.5	165
15	Modeling Tidal Marsh Distribution with Sea-Level Rise: Evaluating the Role of Vegetation, Sediment, and Upland Habitat in Marsh Resiliency. PLoS ONE, 2014, 9, e88760.	2.5	156
16	Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery Using Convolutional Neural Networks. Drones, 2018, 2, 39.	4.9	150
17	A spatial–temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery. Remote Sensing of Environment, 2006, 101, 167-180.	11.0	123
18	Large Greenhouse Gas Emissions from a Temperate Peatland Pasture. Ecosystems, 2011, 14, 311-325.	3.4	114

#	Article	IF	Citations
19	Which †public'? Sampling effects in public participation GIS (PPGIS) and volunteered geographic information (VGI) systems for public lands management. Journal of Environmental Planning and Management, 2014, 57, 190-214.	4.5	101
20	UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones, 2018, 2, 35.	4.9	96
21	Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation. Remote Sensing of Environment, 2014, 149, 166-180.	11.0	95
22	Land use change: complexity and comparisons. Journal of Land Use Science, 2008, 3, 1-10.	2.2	94
23	The Influence of Neighborhood Food Stores on Change in Young Girls' Body Mass Index. American Journal of Preventive Medicine, 2011, 41, 43-51.	3.0	90
24	Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications. Remote Sensing, 2021, 13, 77.	4.0	86
25	Predicting Surface Fuel Models and Fuel Metrics Using Lidar and CIR Imagery in a Dense, Mountainous Forest. Photogrammetric Engineering and Remote Sensing, 2013, 79, 37-49.	0.6	85
26	An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery. GIScience and Remote Sensing, 2007, 44, 24-47.	5.9	78
27	Allometric equation choice impacts lidar-based forest biomass estimates: A case study from the Sierra National Forest, CA. Agricultural and Forest Meteorology, 2012, 165, 64-72.	4.8	77
28	Change detection of built-up land: A framework of combining pixel-based detection and object-based recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119, 402-414.	11.1	70
29	Scales of environmental justice: Combining GIS and spatial analysis for air toxics in West Oakland, California. Health and Place, 2006, 12, 701-714.	3.3	69
30	Mapping the Potential for Biofuel Production on Marginal Lands: Differences in Definitions, Data and Models across Scales. ISPRS International Journal of Geo-Information, 2014, 3, 430-459.	2.9	67
31	Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time. Ecological Indicators, 2011, 11, 263-273.	6.3	65
32	Object-Based Time-Constrained Dynamic Time Warping Classification of Crops Using Sentinel-2. Remote Sensing, 2019, 11, 1257.	4.0	64
33	Sudden oak death in California: Disease progression in oaks and tanoaks. Forest Ecology and Management, 2005, 213, 71-89.	3.2	62
34	Lidar Boosts 3D Ecological Observations and Modelings: A Review and Perspective. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 232-257.	9.6	62
35	Responses of oaks and tanoaks to the sudden oak death pathogen after 8y of monitoring in two coastal California forests. Forest Ecology and Management, 2010, 259, 2248-2255.	3.2	61
36	Appreciation, Use, and Management of Biodiversity and Ecosystem Services in California's Working Landscapes. Environmental Management, 2012, 50, 427-440.	2.7	59

#	Article	IF	Citations
37	Object-Based Image Analysis of Downed Logs in Disturbed Forested Landscapes Using Lidar. Remote Sensing, 2011, 3, 2420-2439.	4.0	55
38	Airborne Lidar-derived volume metrics for aboveground biomass estimation: A comparative assessment for conifer stands. Agricultural and Forest Meteorology, 2014, 198-199, 24-32.	4.8	55
39	A fuzzy logic-based spatial suitability model for drought-tolerant switchgrass in the United States. Computers and Electronics in Agriculture, 2014, 103, 39-47.	7.7	54
40	Improving the prediction of African savanna vegetation variables using time series of MODIS products. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131, 77-91.	11.1	52
41	A framework of region-based spatial relations for non-overlapping features and its application in object based image analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63, 461-475.	11.1	50
42	Evaluating short―and longâ€ŧerm impacts of fuels treatments and simulated wildfire on an oldâ€forest species. Ecosphere, 2015, 6, 1-18.	2.2	50
43	A Comparison of Standard and Hybrid Classifier Methods for Mapping Hardwood Mortality in Areas Affected by "Sudden Oak Death― Photogrammetric Engineering and Remote Sensing, 2004, 70, 1229-1239.	0.6	48
44	Using CASI Hyperspectral Imagery to Detect Mortality and Vegetation Stress Associated with a New Hardwood Forest Disease. Photogrammetric Engineering and Remote Sensing, 2008, 74, 65-75.	0.6	48
45	Management Without Borders? A Survey of Landowner Practices and Attitudes toward Cross-Boundary Cooperation. Society and Natural Resources, 2013, 26, 1082-1100.	1.9	48
46	Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102, 198-208.	11.1	48
47	Vegetation change during 40 years of repeated managed wildfires in the Sierra Nevada, California. Forest Ecology and Management, 2017, 402, 241-252.	3.2	48
48	Land Use and Wildfire: A Review of Local Interactions and Teleconnections. Land, 2015, 4, 140-156.	2.9	47
49	Simple method for direct crown base height estimation of individual conifer trees using airborne LiDAR data. Optics Express, 2018, 26, A562.	3.4	47
50	A Vegetation Mapping Strategy for Conifer Forests by Combining Airborne LiDAR Data and Aerial Imagery. Canadian Journal of Remote Sensing, 2016, 42, 1-15.	2.4	43
51	Characterizing spatial–temporal tree mortality patterns associated with a new forest disease. Forest Ecology and Management, 2007, 253, 220-231.	3.2	42
52	Mapping changes in tidal wetland vegetation composition and pattern across a salinity gradient using high spatial resolution imagery. Wetlands Ecology and Management, 2011, 19, 141-157.	1.5	41
53	Modeling the risk for a new invasive forest disease in the United States: An evaluation of five environmental niche models. Computers, Environment and Urban Systems, 2007, 31, 689-710.	7.1	40
54	Obesity and the Food Environment: Income and Ethnicity Differences Among People With Diabetes. Diabetes Care, 2013, 36, 2697-2705.	8.6	40

#	Article	IF	Citations
55	Urban influence on changes in linear forest edge structure. Landscape and Urban Planning, 2010, 96, 12-18.	7.5	39
56	Characterizing habitats associated with fisher den structures in the Southern Sierra Nevada, California using discrete return lidar. Forest Ecology and Management, 2012, 280, 112-119.	3.2	39
57	Quantifying Ladder Fuels: A New Approach Using LiDAR. Forests, 2014, 5, 1432-1453.	2.1	38
58	Unmanned aerial systems for agriculture and natural resources. California Agriculture, 2017, 71, 5-14.	0.8	38
59	Vegetation Colonization in a Restoring Tidal Marsh: A Remote Sensing Approach. Restoration Ecology, 2008, 16, 313-323.	2.9	37
60	Prospective HyspIRI global observations of tidal wetlands. Remote Sensing of Environment, 2015, 167, 206-217.	11.0	37
61	The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data. Remote Sensing, 2019, 11, 2880.	4.0	35
62	Influence of land use on fine sediment in salmonid spawning gravels within the Russian River Basin, California. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 2740-2751.	1.4	34
63	Expanding the table: The web as a tool for participatory adaptive management inÂCalifornia forests. Journal of Environmental Management, 2012, 109, 1-11.	7.8	34
64	Remotely Sensed Water Limitation in Vegetation: Insights from an Experiment with Unmanned Aerial Vehicles (UAVs). Remote Sensing, 2019, 11, 1853.	4.0	33
65	A review of the emergent ecosystem of collaborative geospatial tools for addressing environmental challenges. Computers, Environment and Urban Systems, 2017, 65, 79-92.	7.1	33
66	Mapping forests with Lidar provides flexible, accurate data with many uses. California Agriculture, 2015, 69, 14-20.	0.8	32
67	Impact of Error in Lidar-Derived Canopy Height and Canopy Base Height on Modeled Wildfire Behavior in the Sierra Nevada, California, USA. Remote Sensing, 2018, 10, 10.	4.0	31
68	DIGITIZATION OF A HISTORIC DATASET: THE WIESLANDER CALIFORNIA VEGETATION TYPE MAPPING PROJECT. Madroñ0, 2005, 52, 191-201.	0.4	30
69	Individual Object Change Detection for Monitoring the Impact of a Forest Pathogen on a Hardwood Forest. Photogrammetric Engineering and Remote Sensing, 2009, 75, 1005-1013.	0.6	28
70	Estimating Ladder Fuels: A New Approach Combining Field Photography with LiDAR. Remote Sensing, 2016, 8, 766.	4.0	27
71	Forest and rangeland owners value land for natural amenities and as financial investment. California Agriculture, 2011, 65, 184-191.	0.8	26
72	Time Series of Landsat Imagery Shows Vegetation Recovery in Two Fragile Karst Watersheds in Southwest China from 1988 to 2016. Remote Sensing, 2019, 11, 2044.	4.0	26

#	Article	IF	CITATIONS
73	Fuzzy <scp>GIS</scp> â€based multiâ€criteria evaluation for US <i>Agave</i> production as a bioenergy feedstock. GCB Bioenergy, 2015, 7, 84-99.	5.6	25
74	Automatic Registration of Airborne Images with Complex Local Distortion. Photogrammetric Engineering and Remote Sensing, 2006, 72, 1049-1059.	0.6	24
75	A Review of Unoccupied Aerial Vehicle Use in Wetland Applications: Emerging Opportunities in Approach, Technology, and Data. Drones, 2021, 5, 45.	4.9	24
76	Consider the source: The impact of media and authority in outreach to private forest and rangeland owners. Journal of Environmental Management, 2012, 97, 131-140.	7.8	23
77	Salt marsh vegetation response to edaphic and topographic changes from upland sedimentation in a Pacific estuary. Wetlands, 2006, 26, 813-829.	1.5	22
78	Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis. Remote Sensing, 2011, 3, 2321-2345.	4.0	22
79	Everything happens somewhere: using webGIS as a tool for sustainable natural resource management. Frontiers in Ecology and the Environment, 2003, $1,541-548$.	4.0	21
80	A simple and integrated approach for fire severity assessment using bi-temporal airborne LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 2019, 78, 25-38.	2.8	21
81	Accounting for non-photosynthetic vegetation in remote-sensing-based estimates of carbon flux in wetlands. Remote Sensing Letters, 2013, 4, 542-551.	1.4	19
82	Monitoring the Impact of Grazing on Rangeland Conservation Easements Using MODIS Vegetation Indices. Rangeland Ecology and Management, 2015, 68, 173-185.	2.3	19
83	Forest fuel treatment detection using multi-temporal airborne lidar data and high-resolution aerial imagery: a case study in the Sierra Nevada Mountains, California. International Journal of Remote Sensing, 2016, 37, 3322-3345.	2.9	19
84	Modeling Climate Suitability of the Western Blacklegged Tick in California. Journal of Medical Entomology, 2018, 55, 1133-1142.	1.8	18
85	A Hybrid Model for Mapping Relative Differences in Belowground Biomass and Root: Shoot Ratios Using Spectral Reflectance, Foliar N and Plant Biophysical Data within Coastal Marsh. Remote Sensing, 2015, 7, 16480-16503.	4.0	17
86	Application of UAV Imagery to Detect and Quantify Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River. Remote Sensing, 2020, 12, 3332.	4.0	16
87	Spatial pattern dynamics of oak mortality and associated disease symptoms in a California hardwood forest affected by sudden oak death. Journal of Forest Research, 2008, 13, 312-319.	1.4	15
88	Mapping algal bloom dynamics in small reservoirs using Sentinel-2 imagery in Google Earth Engine. Ecological Indicators, 2022, 140, 109041.	6.3	15
89	Considerations for ecological reconstruction of historic vegetation: Analysis of the spatial uncertainties in the California Vegetation Type Map dataset. Plant Ecology, 2007, 194, 37-49.	1.6	14
90	Remotely-Sensed Indicators of N-Related Biomass Allocation in Schoenoplectus acutus. PLoS ONE, 2014, 9, e90870.	2.5	14

#	Article	IF	CITATIONS
91	FUEGO â€" Fire Urgency Estimator in Geosynchronous Orbit â€" A Proposed Early-Warning Fire Detection System. Remote Sensing, 2013, 5, 5173-5192.	4.0	13
92	Evaluating the uncertainty of Landsat-derived vegetation indices in quantifying forest fuel treatments using bi-temporal LiDAR data. Ecological Indicators, 2018, 95, 298-310.	6.3	13
93	Land ownership and 20th century changes to forest structure in California. Forest Ecology and Management, 2018, 422, 137-146.	3.2	13
94	Remote Sensing Support for Tidal Wetland Vegetation Research and Management. Lecture Notes in Geoinformation and Cartography, 2009, , 341-363.	1.0	11
95	Challenges and opportunities in synthesizing historical geospatial data using statistical models. Ecological Informatics, 2016, 31, 100-111.	5.2	11
96	Predicting Avian Abundance Within and Across Tidal Marshes Using Fine-Scale Vegetation and Geomorphic Metrics. Wetlands, 2010, 30, 475-487.	1.5	10
97	Temporal and Spatial Relationships Between Watershed Land Use and Salt Marsh Disturbance in a Pacific Estuary. Environmental Management, 2007, 39, 98-112.	2.7	9
98	Validating the Remotely Sensed Geography of Crime: A Review of Emerging Issues. Remote Sensing, 2014, 6, 12723-12751.	4.0	9
99	Modeling future climate suitability for the western blacklegged tick, lxodes pacificus, in California with an emphasis on land access and ownership. Ticks and Tick-borne Diseases, 2021, 12, 101789.	2.7	9
100	Interpretation of scale in paired quadrat variance methods. Journal of Vegetation Science, 2004, 15, 763-770.	2.2	8
101	Methods for facilitating web-based participatory research informatics. Ecological Informatics, 2007, 2, 33-42.	5. 2	7
102	Rescuing and Sharing Historical Vegetation Data for Ecological Analysis: The California Vegetation Type Mapping Project. Biodiversity Informatics, 0, 11 , .	3.0	7
103	Differences in forest management practices in Primorsky Krai: Case study of certified and non-certified by Forest Stewardship Council forest concessions. Journal of Sustainable Forestry, 2019, 38, 471-485.	1.4	7
104	Mapping Diseased Oak Trees Using ADAR Imagery. Geocarto International, 2004, 19, 57-64.	3.5	6
105	Integrated Agricultural Pest Management Through Remote Sensing And Spatial Analyses. , 2007, , 191-207.		6
106	Evaluating Collaborative Adaptive Management in Sierra Nevada Forests by Exploring Public Meeting Dialogues Using Self-Organizing Maps. Society and Natural Resources, 2015, 28, 873-890.	1.9	6
107	From the Field to the Cloud: A Review of Three Approaches to Sharing Historical Data From Field Stations Using Principles From Data Science. Frontiers in Environmental Science, 2018, 6, .	3.3	6
108	From savanna to suburb: Effects of 160Âyears of landscape change on carbon storage in Silicon Valley, California. Landscape and Urban Planning, 2020, 195, 103712.	7. 5	6

#	Article	IF	CITATIONS
109	Sustaining Ecosystem Services From Private Lands in California: The Role of the Landowner. Rangelands, 2014, 36, 44-51.	1.9	5
110	Police-Recorded Crime and Perceived Stress among Patients with Type 2 Diabetes: the Diabetes Study of Northern California (DISTANCE). Journal of Urban Health, 2016, 93, 745-757.	3 . 6	5
111	Accessible light detection and ranging: estimating large tree density for habitat identification. Ecosphere, 2016, 7, e01593.	2.2	5
112	Spatial Accuracy Assessment of Wetland Permit Data. Cartography and Geographic Information Science, 2000, 27, 117-127.	3.0	4
113	Separation of Dead Tree Crowns from the Oak Woodland Forest Mosaic by Integrating Spatial Information. Geocarto International, 2005, 20, 15-20.	3.5	4
114	Characterizing the Networks of Digital Information that Support Collaborative Adaptive Forest Management in Sierra Nevada Forests. Environmental Management, 2015, 56, 94-109.	2.7	4
115	Recent Oak Woodland Dynamics: A Comparative Ecological Study at the Landscape Scale. Landscape Series, 2013, , 427-459.	0.2	4
116	Differing Sensitivities to Fire Disturbance Result in Large Differences Among Remotely Sensed Products of Vegetation Disturbance. Ecosystems, 2019, 22, 1767-1786.	3.4	3
117	Interpretation of scale in paired quadrat variance methods. Journal of Vegetation Science, 2004, 15, 763.	2.2	3
118	Individual Tree Level Forest Fire Assessment Using Bi-temporal LiDAR Data. , 2018, , .		1
119	Everything Happens Somewhere: Using WebGIS as a Tool for Sustainable Natural Resource Management. Frontiers in Ecology and the Environment, 2003, 1, 541.	4.0	1