
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2489373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effectiveness of Radial Shock-Wave Therapy for Calcific Tendinitis of the Shoulder: Single-Blind, Randomized Clinical Study. Physical Therapy, 2006, 86, 672-682.	2.4	137
2	Locomotor patterns in cerebellar ataxia. Journal of Neurophysiology, 2014, 112, 2810-2821.	1.8	114
3	Neuromuscular adjustments of gait associated with unstable conditions. Journal of Neurophysiology, 2015, 114, 2867-2882.	1.8	112
4	Gait Pattern in Inherited Cerebellar Ataxias. Cerebellum, 2012, 11, 194-211.	2.5	110
5	Foot drop and plantar flexion failure determine different gait strategies in Charcot-Marie-Tooth patients. Clinical Biomechanics, 2007, 22, 905-916.	1.2	97
6	Relationship between recovery of calf-muscle biomechanical properties and gait pattern following surgery for achilles tendon rupture. Clinical Biomechanics, 2007, 22, 211-220.	1.2	82
7	Wearable Monitoring Devices for Biomechanical Risk Assessment at Work: Current Status and Future Challenges—A Systematic Review. International Journal of Environmental Research and Public Health, 2018, 15, 2001.	2.6	82
8	Lower Limb Antagonist Muscle Co-Activation and its Relationship with Gait Parameters in Cerebellar Ataxia. Cerebellum, 2014, 13, 226-236.	2.5	78
9	Fourâ€week trunkâ€specific rehabilitation treatment improves lateral trunk flexion in Parkinson's disease. Movement Disorders, 2010, 25, 325-331.	3.9	62
10	A new muscle co-activation index for biomechanical load evaluation in work activities. Ergonomics, 2015, 58, 966-979.	2.1	46
11	Harmony as a convergence attractor that minimizes the energy expenditure and variability in physiological gait and the loss of harmony in cerebellar ataxia. Clinical Biomechanics, 2017, 48, 15-23.	1.2	45
12	Local Stability of the Trunk in Patients with Degenerative Cerebellar Ataxia During Walking. Cerebellum, 2017, 16, 26-33.	2.5	44
13	Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis. Clinical Biomechanics, 2017, 48, 63-72.	1.2	40
14	Smart Collaborative Systems for Enabling Flexible and Ergonomic Work Practices [Industry Activities]. IEEE Robotics and Automation Magazine, 2020, 27, 169-176.	2.0	40
15	Progression of Gait Ataxia in Patients with Degenerative Cerebellar Disorders: a 4-Year Follow-Up Study. Cerebellum, 2017, 16, 629-637.	2.5	38
16	The Effects of Upper-Body Exoskeletons on Human Metabolic Cost and Thermal Response during Work Tasks—A Systematic Review. International Journal of Environmental Research and Public Health, 2020, 17, 7374.	2.6	38
17	Gait Patterns in Patients with Hereditary Spastic Paraparesis. PLoS ONE, 2016, 11, e0164623.	2.5	38
18	Turning strategies in patients with cerebellar ataxia. Experimental Brain Research, 2012, 222, 65-75.	1.5	36

#	Article	IF	CITATIONS
19	Lifting activity assessment using surface electromyographic features and neural networks. International Journal of Industrial Ergonomics, 2018, 66, 1-9.	2.6	36
20	Identification of specific gait patterns in patients with cerebellar ataxia, spastic paraplegia, and Parkinson's disease: A non-hierarchical cluster analysis. Human Movement Science, 2018, 57, 267-279.	1.4	36
21	Modelling the spine as a deformable body: Feasibility of reconstruction using an optoelectronic system. Applied Ergonomics, 2013, 44, 192-199.	3.1	35
22	Upper Body Kinematics in Patients with Cerebellar Ataxia. Cerebellum, 2014, 13, 689-697.	2.5	35
23	Surface electromyography for risk assessment in work activities designed using the "revised NIOSH lifting equationâ€: International Journal of Industrial Ergonomics, 2018, 68, 34-45.	2.6	35
24	Lower-Limb Joint Coordination Pattern in Obese Subjects. BioMed Research International, 2013, 2013, 1-9.	1.9	31
25	The Sensor-Based Biomechanical Risk Assessment at the Base of the Need for Revising of Standards for Human Ergonomics. Sensors, 2020, 20, 5750.	3.8	31
26	Kinematic and Electromyographic Study of the Nociceptive Withdrawal Reflex in the Upper Limbs during Rest and Movement. Journal of Neuroscience, 2006, 26, 3505-3513.	3.6	29
27	Prediction of Responsiveness of Gait Variables to Rehabilitation Training in Parkinson's Disease. Frontiers in Neurology, 2019, 10, 826.	2.4	29
28	Machine Learning Approach to Support the Detection of Parkinson's Disease in IMU-Based Gait Analysis. Sensors, 2022, 22, 3700.	3.8	29
29	Mechanical lifting energy consumption in work activities designed by means of the "revised NIOSH lifting equation― Industrial Health, 2017, 55, 444-454.	1.0	28
30	Common and specific gait patterns in people with varying anatomical levels of lower limb amputation and different prosthetic components. Human Movement Science, 2019, 66, 9-21.	1.4	28
31	An artificial neural network approach to detect presence and severity of Parkinson's disease via gait parameters. PLoS ONE, 2021, 16, e0244396.	2.5	28
32	Planned Gait Termination in Cerebellar Ataxias. Cerebellum, 2012, 11, 896-904.	2.5	27
33	Strategies Adopted by Cerebellar Ataxia Patients to Perform U-Turns. Cerebellum, 2013, 12, 460-468.	2.5	27
34	Locomotor coordination in patients with Hereditary Spastic Paraplegia. Journal of Electromyography and Kinesiology, 2019, 45, 61-69.	1.7	26
35	Comparison between Kinematic and Kinetic Methods for Computing the Vertical Displacement of the Center of Mass during Human Hopping at Different Frequencies. Journal of Applied Biomechanics, 2008, 24, 271-279.	0.8	25
36	Lifting Activity Assessment Using Kinematic Features and Neural Networks. Applied Sciences (Switzerland), 2020, 10, 1989.	2.5	23

#	Article	IF	CITATIONS
37	Sudden Stopping in Patients with Cerebellar Ataxia. Cerebellum, 2013, 12, 607-616.	2.5	22
38	Biomechanical evaluation of supermarket cashiers before and after a redesign of the checkout counter. Ergonomics, 2012, 55, 650-669.	2.1	21
39	Effects of 8-week strength training with two models of chest press machines on muscular activity pattern and strength. Journal of Electromyography and Kinesiology, 2008, 18, 618-627.	1.7	20
40	Differential changes in the spinal segmental locomotor output in Hereditary Spastic Paraplegia. Clinical Neurophysiology, 2018, 129, 516-525.	1.5	20
41	Effect of 24-h continuous rotigotine treatment on stationary and non-stationary locomotion in de novo patients with Parkinson disease in an open-label uncontrolled study. Journal of Neurology, 2015, 262, 2539-2547.	3.6	19
42	Global lower limb muscle coactivation during walking at different speeds: Relationship between spatio-temporal, kinematic, kinetic, and energetic parameters. Journal of Electromyography and Kinesiology, 2018, 43, 148-157.	1.7	19
43	Global Muscle Coactivation of the Sound Limb in Gait of People with Transfemoral and Transtibial Amputation. Sensors, 2020, 20, 2543.	3.8	19
44	Modulation of spinal inhibitory reflex responses to cutaneous nociceptive stimuli during upper limb movement. European Journal of Neuroscience, 2008, 28, 559-568.	2.6	17
45	Modular motor control of the sound limb in gait of people with trans-femoral amputation. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 132.	4.6	17
46	Myoelectric manifestation of muscle fatigue in repetitive work detected by means of miniaturized sEMG sensors. International Journal of Occupational Safety and Ergonomics, 2018, 24, 464-474.	1.9	16
47	Walking strategies of visually impaired people on trapezoidal- and sinusoidal-section tactile groundsurface indicators. Ergonomics, 2011, 54, 246-256.	2.1	15
48	Reorganization of multi-muscle and joint withdrawal reflex during arm movements in post-stroke hemiparetic patients. Clinical Neurophysiology, 2012, 123, 527-540.	1.5	15
49	Kinematic and electromyographic assessment of manual handling on a supermarket green- grocery shelf. Work, 2015, 51, 261-271.	1.1	15
50	Use of dynamic movement orthoses to improve gait stability and trunk control in ataxic patients. European Journal of Physical and Rehabilitation Medicine, 2017, 53, 735-743.	2.2	15
51	Progressive Modular Rebalancing System and Visual Cueing for Gait Rehabilitation in Parkinson's Disease: A Pilot, Randomized, Controlled Trial With Crossover. Frontiers in Neurology, 2019, 10, 902.	2.4	15
52	Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait. Cerebellum, 2023, 22, 46-58.	2.5	15
53	Bipolar versus high-density surface electromyography for evaluating risk in fatiguing frequency-dependent lifting activities. Applied Ergonomics, 2021, 95, 103456.	3.1	14
54	Ability of a Set of Trunk Inertial Indexes of Gait to Identify Gait Instability and Recurrent Fallers in Parkinson's Disease. Sensors, 2021, 21, 3449.	3.8	13

#	Article	IF	CITATIONS
55	Impairment of Global Lower Limb Muscle Coactivation During Walking in Cerebellar Ataxias. Cerebellum, 2020, 19, 583-596.	2.5	12
56	Biomechanical characterization of the Junzuki karate punch: indexes of performance. European Journal of Sport Science, 2018, 18, 796-805.	2.7	11
57	Kinematic and electromyographic differences between mouse and touchpad use on laptop computers. International Journal of Industrial Ergonomics, 2014, 44, 413-420.	2.6	10
58	Dataset on gait patterns in degenerative neurological diseases. Data in Brief, 2018, 16, 806-816.	1.0	10
59	Critical Issues and Imminent Challenges in the Use of sEMG in Return-To-Work Rehabilitation of Patients Affected by Neurological Disorders in the Epoch of Human–Robot Collaborative Technologies. Frontiers in Neurology, 2020, 11, 572069.	2.4	10
60	Effect of Restraining the Base of Support on the Other Biomechanical Features in Patients with Cerebellar Ataxia. Cerebellum, 2018, 17, 264-275.	2,5	9
61	Consensus Paper: Ataxic Gait. Cerebellum, 2022, , 1.	2.5	9
62	Adaptive behaviour of the spinal cord in the transition from quiet stance to walking. BMC Neuroscience, 2012, 13, 80.	1.9	8
63	The Working Life of People with Degenerative Cerebellar Ataxia. Cerebellum, 2019, 18, 910-921.	2.5	8
64	Pelvic obliquity as a compensatory mechanism leading to lower energy recovery: Characterization among the types of prostheses in subjects with transfemoral amputation. Gait and Posture, 2020, 80, 280-284.	1.4	8
65	Characterizing the Gait of People With Different Types of Amputation and Prosthetic Components Through Multimodal Measurements: A Methodological Perspective. Frontiers in Rehabilitation Sciences, 2022, 3, .	1.2	8
66	Neurophysiology of gait. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 154, 299-303.	1.8	7
67	Perceptive rehabilitation and trunk posture alignment in patients with Parkinson disease: a single blind randomized controlled trial. European Journal of Physical and Rehabilitation Medicine, 2016, 52, 799-809.	2.2	7
68	Modular organization of the head retraction responses elicited by electrical painful stimulation of the facial skin in humans. Clinical Neurophysiology, 2015, 126, 2306-2313.	1.5	5
69	Human-Robot Collaboration (HRC) Technologies for Reducing Work-Related Musculoskeletal Diseases in Industry 4.0. Lecture Notes in Networks and Systems, 2022, , 335-342.	0.7	5
70	Trunk Muscle Coactivation in People with and without Low Back Pain during Fatiguing Frequency-Dependent Lifting Activities. Sensors, 2022, 22, 1417.	3.8	5
71	Kinematic and neurophysiological models: Future applications in neurorehabilitation. Journal of Rehabilitation Medicine, 2009, 41, 986-987.	1.1	4
72	Ergonomic Risk Assessment of Sea Fishermen Part II: Upper Limb Repetitive Movements. Advances in Intelligent Systems and Computing, 2017, , 333-340.	0.6	3

#	Article	IF	CITATIONS
73	Trunk muscle co-activation and activity in one- and two-person lifting. International Journal of Industrial Ergonomics, 2022, 89, 103297.	2.6	3
74	Modular Control of Kinematics in Prosthetic Gait: Low-Dimensional Description Based on the Planar Covariation Law. IFMBE Proceedings, 2021, , 833-839.	0.3	2
75	Kinematic analysis of post office employees' workstations. Work, 2012, 41, 2012-2016.	1.1	1
76	Reply to Comment "Why Do Patients with Cerebellar Ataxia Not Use Environmental Cues for Reducing Unpredictability of Sudden Gait Stopping?―on "Sudden Stopping in Patients with Cerebellar Ataxia― Cerebellum, 2013, 12, 958-959.	2.5	1
77	A New Contact Mat Wireless System for Estimating Vertical Jump Height. Procedia Engineering, 2016, 147, 770-775.	1.2	1
78	Back and Shoulder Biomechanical Load in Curbside Waste Workers. Advances in Intelligent Systems and Computing, 2020, , 237-243.	0.6	1
79	Upper Limb Repetitive Movement Risk Assessment by Means of sEMG Parameters. Advances in Intelligent Systems and Computing, 2018, , 213-221.	0.6	1
80	2.4 GHz BLE-based Smart Sensing System for Remote Monitoring of Health, Safety and Comfort at Workplace. , 2021, , .		1
81	Kinematic and Electromyographic Assessment of Upper Limb Repetitive Movements in an Artisanal Pastry Workshop. Procedia Manufacturing, 2015, 3, 4315-4321.	1.9	Ο
82	Global lower limb muscle coactivation during walking in trans-femoral and trans-tibial amputees. , 2020, , .		0
83	sEMG and Postural Analysis for Biomechanical Risk Assessment in a Banknotes Printing Process. Lecture Notes in Networks and Systems, 2021, , 297-304.	0.7	Ο
84	Ergonomic Risk Assessment of Sea Fisherman Part IV: Tunisian Chapter. Lecture Notes in Networks and Systems, 2021, , 157-167.	0.7	0
85	Kerbside Waste Collection Round Risk Assessment by Means of Physiological Parameters: sEMG and Heart Rate. Lecture Notes in Networks and Systems, 2022, , 191-199.	0.7	0
86	Ability of a set of trunk acceleration-derived gait stability indexes to identify gait unbalance and recurrent fallers in subjects with Parkinson's disease. Journal of the Neurological Sciences, 2021, 429, 117670.	0.6	0
87	Electromyographic and Kinematic Patient Handling Risk Assessment: Overhead Lift Versus Floor Lift. Advances in Intelligent Systems and Computing, 2016, , 245-254.	0.6	Ο
88	Comparison of Two Post Office Workstation Layouts by Means of an Optoelectronic Motion Analysis System. Advances in Intelligent Systems and Computing, 2018, , 230-240.	0.6	0
89	Applied Forces and sEMG Activity Contribution to Risk Assessment for Assistance Workers Helping Passengers with Restricted Mobility. Advances in Intelligent Systems and Computing, 2019, , 218-226.	0.6	0
90	sEMG Activity Contribution to Risk Assessment for PRM Assistance Workers. Advances in Intelligent Systems and Computing, 2019, , 357-362.	0.6	0