Frank Caruso

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2489310/frank-caruso-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

627	59,571	126	222
papers	citations	h-index	g-index
677	64,088 ext. citations	11.5	8.11
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
627	Transforming the chemical structure and bio-nano activity of doxorubicin by ultrasound for selective killing of cancer cells <i>Advanced Materials</i> , 2022 , e2107964	24	1
626	Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers ACS Applied Materials & Samp; Interfaces, 2022,	9.5	4
625	Pharmacokinetics and biodistribution of supraparticle-delivered neurotrophin 3 in the guinea pig cochlea <i>Journal of Controlled Release</i> , 2022 , 342, 295-307	11.7	О
624	Assembly of Bioactive Nanoparticles via Metal-Phenolic Complexation Advanced Materials, 2021, e210	08 <u>6</u> 24	4
623	Origins of Structural Elasticity in Metal-Phenolic Networks Probed by Super-Resolution Microscopy and Multiscale Simulations. <i>ACS Nano</i> , 2021 ,	16.7	4
622	X-ray-Based Techniques to Study the Nano-Bio Interface. ACS Nano, 2021, 15, 3754-3807	16.7	18
621	Metal P henolic Networks as Tunable Buffering Systems. <i>Chemistry of Materials</i> , 2021 , 33, 2557-2566	9.6	5
620	Exploiting Supramolecular Dynamics in Metal-Phenolic Networks to Generate Metal-Oxide and Metal-Carbon Networks. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14586-14594	16.4	14
619	Exploiting Supramolecular Dynamics in Metal P henolic Networks to Generate Metal © xide and Metal © arbon Networks. <i>Angewandte Chemie</i> , 2021 , 133, 14707-14715	3.6	4
618	Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and Particle-Immune Cell Interactions in Human Blood. <i>ACS Nano</i> , 2021 , 15, 10025-10038	16.7	6
617	Fluorinated Metal-Organic Coatings with Selective Wettability. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9972-9981	16.4	7
616	A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100574	10.1	4
615	NFAT signaling in human mesenchymal stromal cells affects extracellular matrix remodeling and antifungal immune responses. <i>IScience</i> , 2021 , 24, 102683	6.1	O
614	Quantitatively Tracking Bio-Nano Interactions of Metal-Phenolic Nanocapsules by Mass Cytometry. <i>ACS Applied Materials & District Mater</i>	9.5	2
613	Stereoselective Growth of Small Molecule Patches on Nanoparticles. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12138-12144	16.4	7
612	Engineered Coatings via the Assembly of Amino-Quinone Networks. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2346-2354	16.4	18
611	Microemulsion-Assisted Templating of Metal-Stabilized Poly(ethylene glycol) Nanoparticles. <i>Biomacromolecules</i> , 2021 , 22, 612-619	6.9	1

(2020-2021)

610	Engineered Coatings via the Assembly of Amino-Quinone Networks. <i>Angewandte Chemie</i> , 2021 , 133, 2376-2384	3.6	2
609	Protocols for Reproducible, Increased-Scale Synthesis of Engineered Particles B ridging the Upscaling Gap[I <i>Chemistry of Materials</i> , 2021 , 33, 1099-1115	9.6	4
608	T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. <i>ACS Nano</i> , 2021 , 15, 3736-3753	16.7	17
607	Programmable Phototaxis of Metal-Phenolic Particle Microswimmers. <i>Advanced Materials</i> , 2021 , 33, e2	0 <u>0</u> 617	7 6
606	Sono-Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. <i>Angewandte Chemie</i> , 2021 , 133, 21699-21705	3.6	1
605	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. <i>Angewandte Chemie</i> , 2021 , 133, 20387-20392	3.6	1
604	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20225-20230	16.4	4
603	Sono-Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21529-21535	16.4	5
602	Luminescent Metal-Phenolic Networks for Multicolor Particle Labeling. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24968-24975	16.4	5
601	RNAi therapeutics: an antiviral strategy for human infections. <i>Current Opinion in Pharmacology</i> , 2020 , 54, 121-129	5.1	10
600	Understanding the Uptake of Nanomedicines at Different Stages of Brain Cancer Using a Modular Nanocarrier Platform and Precision Bispecific Antibodies. <i>ACS Central Science</i> , 2020 , 6, 727-738	16.8	18
599	Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 24635-24643	9.5	7
598	Sulfoxide-Containing Polymer-Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. <i>Advanced Science</i> , 2020 , 7, 2000406	13.6	18
597	Modulating the Selectivity and Stealth Properties of Ellipsoidal Polymersomes through a Multivalent Peptide Ligand Display. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000261	10.1	4
596	Interfacial Assembly of Metal-Phenolic Networks for Hair Dyeing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 29826-29834	9.5	9
595	Polyphenol-Mediated Assembly for Particle Engineering. <i>Accounts of Chemical Research</i> , 2020 , 53, 1269	-1278	94
594	Cobalt-Directed Assembly of Antibodies onto Metal-Phenolic Networks for Enhanced Particle Targeting. <i>Nano Letters</i> , 2020 , 20, 2660-2666	11.5	24
593	Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy. <i>Nanoscale</i> , 2020 , 12, 15402-15413	7.7	Ο

592	Polyphenol-Mediated Assembly of Proteins for Engineering Functional Materials. <i>Angewandte Chemie</i> , 2020 , 132, 15748-15755	3.6	12
591	Polyphenol-Mediated Assembly of Proteins for Engineering Functional Materials. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15618-15625	16.4	56
590	Injectable and Sprayable Polyphenol-Based Hydrogels for Controlling Hemostasis <i>ACS Applied Bio Materials</i> , 2020 , 3, 1258-1266	4.1	28
589	Nanoengineering multifunctional hybrid interfaces using adhesive glycogen nanoparticles. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 4851-4858	7.3	5
588	Particle-mediated delivery of frataxin plasmid to a human sensory neuronal model of Friedreich's ataxia. <i>Biomaterials Science</i> , 2020 , 8, 2398-2403	7.4	2
587	Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. <i>JCI Insight</i> , 2020 , 5,	9.9	30
586	The Biomolecular Corona in 2D and Reverse: Patterning Metal P henolic Networks on Proteins, Lipids, Nucleic Acids, Polysaccharides, and Fingerprints. <i>Advanced Functional Materials</i> , 2020 , 30, 190580) 5 5.6	13
585	Glycogen as a Building Block for Advanced Biological Materials. <i>Advanced Materials</i> , 2020 , 32, e1904625	24	21
584	Engineering of Nebulized Metal-Phenolic Capsules for Controlled Pulmonary Deposition. <i>Advanced Science</i> , 2020 , 7, 1902650	13.6	21
583	Self-Assembly of a Metal-Phenolic Sorbent for Broad-Spectrum Metal Sequestration. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 3746-3754	9.5	12
582	A few clarifications on MIRIBEL. <i>Nature Nanotechnology</i> , 2020 , 15, 2-3	28.7	12
581	Ordered Mesoporous Metal-Phenolic Network Particles. <i>Journal of the American Chemical Society</i> , 2020 , 142, 335-341	16.4	42
580	Expanding the Toolbox of Metal P henolic Networks via Enzyme-Mediated Assembly. <i>Angewandte Chemie</i> , 2020 , 132, 1728-1734	3.6	9
579	Expanding the Toolbox of Metal-Phenolic Networks via Enzyme-Mediated Assembly. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1711-1717	16.4	24
578	A radiolabeled drug tracing method to study neurotrophin-3 retention and distribution in the cochlea after nano-based local delivery. <i>MethodsX</i> , 2020 , 7, 101078	1.9	1
577	Polyphenol-Based Nanoparticles for Intracellular Protein Delivery Competing Supramolecular Interactions. <i>ACS Nano</i> , 2020 , 14, 12972-12981	16.7	24
576	Particle engineering enabled by polyphenol-mediated supramolecular networks. <i>Nature Communications</i> , 2020 , 11, 4804	17.4	28
575	Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization. <i>ACS Applied Materials & District Science</i> , 2020 , 12, 38976-38988	9.5	4

(2019-2020)

574	Distribution of Particles in Human Stem Cell-Derived 3D Neuronal Cell Models: Effect of Particle Size, Charge, and Density. <i>Biomacromolecules</i> , 2020 , 21, 3186-3196	6.9	1
573	Programmable Permeability of Metal P henolic Network Microcapsules. <i>Chemistry of Materials</i> , 2020 , 32, 6975-6982	9.6	14
572	Template-Mediated Assembly of DNA into Microcapsules for Immunological Modulation. <i>Small</i> , 2020 , 16, e2002750	11	9
57 ¹	Person-Specific Biomolecular Coronas Modulate Nanoparticle Interactions with Immune Cells in Human Blood. <i>ACS Nano</i> , 2020 , 14, 15723-15737	16.7	20
570	Catalytically Active Copper Phosphate Dextran Sulfate Microparticle Coatings for Bioanalyte Sensing. <i>Particle and Particle Systems Characterization</i> , 2020 , 37, 2000210	3.1	1
569	Dynamic Electrophoretic Assembly of Metal P henolic Films: Accelerated Formation and Cytocompatible Detachment. <i>Chemistry of Materials</i> , 2020 , 32, 7746-7753	9.6	11
568	Modular Assembly of Host G uest Metal P henolic Networks Using Macrocyclic Building Blocks. <i>Angewandte Chemie</i> , 2020 , 132, 281-286	3.6	5
567	Modular Assembly of Host-Guest Metal-Phenolic Networks Using Macrocyclic Building Blocks. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 275-280	16.4	26
566	Ricocheting Droplets Moving on Super-Repellent Surfaces. Advanced Science, 2019, 6, 1901846	13.6	13
565	Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake. <i>Biomacromolecules</i> , 2019 , 20, 3592-3600	6.9	18
564	Metal-Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles. <i>ACS Nano</i> , 2019 , 13, 11653-11664	16.7	63
563	Modular Metal-Organic Polyhedra Superassembly: From Molecular-Level Design to Targeted Drug Delivery. <i>Advanced Materials</i> , 2019 , 31, e1806774	24	34
562	Tuning the Mechanical Behavior of Metal-Phenolic Networks through Building Block Composition. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 11, 6404-6410	9.5	19
561	Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt-tannic acid networks. <i>Nanoscale</i> , 2019 , 11, 1921-1928	7.7	18
560	The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth MBwald. <i>ACS Nano</i> , 2019 , 13, 6151-6169	16.7	127
559	Revisiting cell-particle association in vitro: A quantitative method to compare particle performance. Journal of Controlled Release, 2019 , 307, 355-367	11.7	11
558	Template-Free Synthesis of Chemically Asymmetric Silica Nanotubes for Selective Cargo Loading and Sustained Drug Release. <i>Chemistry of Materials</i> , 2019 , 31, 4291-4298	9.6	12
557	Link between Low-Fouling and Stealth: A Whole Blood Biomolecular Corona and Cellular Association Analysis on Nanoengineered Particles. <i>ACS Nano</i> , 2019 , 13, 4980-4991	16.7	37

556	SupraCells: Living Mammalian Cells Protected within Functional Modular Nanoparticle-Based Exoskeletons. <i>Advanced Materials</i> , 2019 , 31, e1900545	24	56
555	Selective Metal-Phenolic Assembly from Complex Multicomponent Mixtures. <i>ACS Applied Materials</i> & Samp; Interfaces, 2019 , 11, 17714-17721	9.5	11
554	Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801607	10.1	24
553	Protein Adsorption and Coordination-Based End-Tethering of Functional Polymers on Metal-Phenolic Network Films. <i>Biomacromolecules</i> , 2019 , 20, 1421-1428	6.9	24
552	Engineering Biocoatings To Prolong Drug Release from Supraparticles. <i>Biomacromolecules</i> , 2019 , 20, 3425-3434	6.9	11
551	Cellular Targeting of Bispecific Antibody-Functionalized Poly(ethylene glycol) Capsules: Do Shape and Size Matter?. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 28720-28731	9.5	9
550	Oxidation-Mediated Kinetic Strategies for Engineering Metal-Phenolic Networks. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12563-12568	16.4	37
549	Oxidation-Mediated Kinetic Strategies for Engineering Metal P henolic Networks. <i>Angewandte Chemie</i> , 2019 , 131, 12693-12698	3.6	4
548	Advancing Metal-Phenolic Networks for Visual Information Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 29305-29311	9.5	28
547	Phenolic Building Blocks for the Assembly of Functional Materials. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1904-1927	16.4	189
546	Phenolische Bausteine fildie Assemblierung von Funktionsmaterialien. <i>Angewandte Chemie</i> , 2019 , 131, 1920-1945	3.6	27
		9	
545	In Situ Characterization of Protein Corona Formation on Silica Microparticles Using Confocal Laser Scanning Microscopy Combined with Microfluidics. <i>ACS Applied Materials & Description</i> 11, 2459-2469	9.5	30
545 544	Scanning Microscopy Combined with Microfluidics. ACS Applied Materials & Distriction (2019),		30 83
	Scanning Microscopy Combined with Microfluidics. <i>ACS Applied Materials & Description</i> 11, 2459-2469 Super-resolution Imaging of Proton Sponge-Triggered Rupture of Endosomes and Cytosolic	9.5	
544	Scanning Microscopy Combined with Microfluidics. <i>ACS Applied Materials & Description Scanning Microfluidics & Description Scanning Microfluidic Scanning Materials & Description Scanning Microfluidic & Description Scanning Microfluidic & Description Scanning Microfluidic & Description Materials & Description Ma</i>	9.5	83
544 543	Scanning Microscopy Combined with Microfluidics. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & D</i>	9.5 16.7 6.9	83 23 23
544543542	Scanning Microscopy Combined with Microfluidics. <i>ACS Applied Materials & Discourt Materials </i>	9.5 16.7 6.9 9.5	83 23 23

538	Multiligand Metal-Phenolic Assembly from Green Tea Infusions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 7632-7639	9.5	47
537	Synthesis of Metal Nanoparticles in Metal-Phenolic Networks: Catalytic and Antimicrobial Applications of Coated Textiles. <i>Advanced Healthcare Materials</i> , 2018 , 7, 1700934	10.1	42
536	Nanoengineering of Poly(ethylene glycol) Particles for Stealth and Targeting. <i>Langmuir</i> , 2018 , 34, 1081	7 ₄ 1082	2740
535	Self-Assembly of Nano- to Macroscopic Metal P henolic Materials. <i>Chemistry of Materials</i> , 2018 , 30, 5750	- 57.5 8	38
534	Low-Fouling and Biodegradable Protein-Based Particles for Thrombus Imaging. ACS Nano, 2018, 12, 698	8 &6 99	624
533	Particle Targeting in Complex Biological Media. <i>Advanced Healthcare Materials</i> , 2018 , 7, 1700575	10.1	62
532	Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. <i>Advanced Materials</i> , 2018 , 30, e1801362	24	226
531	Cobalt Phosphate Nanostructures for Non-Enzymatic Glucose Sensing at Physiological pH. <i>ACS Applied Materials & Discours (Materials & Discours)</i> (2018), 10, 42786-42795	9.5	36
530	Spray Assembly of Metal-Phenolic Networks: Formation, Growth, and Applications. <i>ACS Applied Materials & Acs Applied</i> (1997), 10, 33721-33729	9.5	61
529	Coatings super-repellent to ultralow surface tension liquids. <i>Nature Materials</i> , 2018 , 17, 1040-1047	27	190
528	Minimum information reporting in bio-nano experimental literature. <i>Nature Nanotechnology</i> , 2018 , 13, 777-785	28.7	297
527	Gel-Mediated Electrospray Assembly of Silica Supraparticles for Sustained Drug Delivery. <i>ACS Applied Materials & Delivery (Nature of Sustained Drug Delivery)</i> (1988) 10, 31019-31031	9.5	20
526	Self-Assembled Metal-Phenolic Networks on Emulsions as Low-Fouling and pH-Responsive Particles. <i>Small</i> , 2018 , 14, e1802342	11	36
525	Supramolecular Metal-Phenolic Gels for the Crystallization of Active Pharmaceutical Ingredients. <i>Small</i> , 2018 , 14, e1801202	11	25
524	Glycogen-nucleic acid constructs for gene silencing in multicellular tumor spheroids. <i>Biomaterials</i> , 2018 , 176, 34-49	15.6	21
523	Cell-Conditioned Protein Coronas on Engineered Particles Influence Immune Responses. <i>Biomacromolecules</i> , 2017 , 18, 431-439	6.9	23
522	Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. <i>ACS Nano</i> , 2017 , 11, 54-68	16.7	119
521	Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting Cells. <i>ACS Applied Materials & Description (Control of the Control of the </i>	9.5	10

520	The resilience of carbonic anhydrase enzyme for membrane-based carbon capture applications. <i>International Journal of Greenhouse Gas Control</i> , 2017 , 62, 122-129	4.2	12
519	Self-Assembled Nanoparticles from Phenolic Derivatives for Cancer Therapy. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700467	10.1	55
518	Formation of Polyrotaxane Particles via Template Assembly. <i>Biomacromolecules</i> , 2017 , 18, 2118-2127	6.9	5
517	An Enzyme-Coated MetalDrganic Framework Shell for Synthetically Adaptive Cell Survival. <i>Angewandte Chemie</i> , 2017 , 129, 8630-8635	3.6	27
516	A Partially Graphitic Mesoporous Carbon Membrane with Three-Dimensionally Networked Nanotunnels for Ultrasensitive Electrochemical Detection. <i>Chemistry of Materials</i> , 2017 , 29, 5286-5293	9.6	30
515	Tuning the Properties of Polymer Capsules for Cellular Interactions. <i>Bioconjugate Chemistry</i> , 2017 , 28, 1859-1866	6.3	15
514	Lactosylated Glycogen Nanoparticles for Targeting Prostate Cancer Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 16869-16879	9.5	32
513	Rust-Mediated Continuous Assembly of Metal-Phenolic Networks. <i>Advanced Materials</i> , 2017 , 29, 16067	1 7 4	78
512	Modulated Fragmentation of Proapoptotic Peptide Nanoparticles Regulates Cytotoxicity. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4009-4018	16.4	44
511	Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. <i>Nano Today</i> , 2017 , 12, 136-148	17.9	280
510	Interactions between circulating nanoengineered polymer particles and extracellular matrix components in vitro. <i>Biomaterials Science</i> , 2017 , 5, 267-273	7.4	9
509	Biofunctional metal-phenolic films from dietary flavonoids. <i>Chemical Communications</i> , 2017 , 53, 1068-1	0 ₹ .8	45
508	Templated Polymer Replica Nanoparticles to Facilitate Assessment of Material-Dependent Pharmacokinetics and Biodistribution. <i>ACS Applied Materials & Dependent Materials & Depe</i>	9.5	15
507	Influence of Ionic Strength on the Deposition of Metal-Phenolic Networks. <i>Langmuir</i> , 2017 , 33, 10616-1	0,622	44
506	Bridging Bio-Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613	16.7	222
505	Role of the Protein Corona Derived from Human Plasma in Cellular Interactions between Nanoporous Human Serum Albumin Particles and Endothelial Cells. <i>Bioconjugate Chemistry</i> , 2017 , 28, 2062-2068	6.3	30
504	Patterned Poly(dopamine) Films for Enhanced Cell Adhesion. <i>Bioconjugate Chemistry</i> , 2017 , 28, 75-80	6.3	13
503	Nanoengineering Particles through Template Assembly. <i>Chemistry of Materials</i> , 2017 , 29, 289-306	9.6	63

502	A Decade of the Protein Corona. ACS Nano, 2017, 11, 11773-11776	16.7	329
501	An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8510-8515	16.4	120
500	Improving Targeting of Metal-Phenolic Capsules by the Presence of Protein Coronas. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 22914-22	9.5	49
499	Innovation in Layer-by-Layer Assembly. <i>Chemical Reviews</i> , 2016 , 116, 14828-14867	68.1	521
498	Codelivery of NOD2 and TLR9 Ligands via Nanoengineered Protein Antigen Particles for Improving and Tuning Immune Responses. <i>Advanced Functional Materials</i> , 2016 , 26, 7526-7536	15.6	13
497	Biomimetics: Metal © rganic Framework Coatings as Cytoprotective Exoskeletons for Living Cells (Adv. Mater. 36/2016). <i>Advanced Materials</i> , 2016 , 28, 8066-8066	24	3
496	Polymer Capsules for Plaque-Targeted In Vivo Delivery. <i>Advanced Materials</i> , 2016 , 28, 7703-7	24	28
495	Metal-Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. <i>Advanced Materials</i> , 2016 , 28, 7910-7914	24	192
494	Metal P henolic Supramolecular Gelation. <i>Angewandte Chemie</i> , 2016 , 128, 14007-14011	3.6	20
493	Synthesis of Chemically Asymmetric Silica Nanobottles and Their Application for Cargo Loading and as Nanoreactors and Nanomotors. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14733-14737	16.4	64
492	Synthesis of Chemically Asymmetric Silica Nanobottles and Their Application for Cargo Loading and as Nanoreactors and Nanomotors. <i>Angewandte Chemie</i> , 2016 , 128, 14953-14957	3.6	17
491	Dynamic Flow Impacts Cell-Particle Interactions: Sedimentation and Particle Shape Effects. <i>Langmuir</i> , 2016 , 32, 10995-11001	4	23
490	In situ layer-by-layer assembled carbonic anhydrase-coated hollow fiber membrane contactor for rapid CO2 absorption. <i>Journal of Membrane Science</i> , 2016 , 514, 556-565	9.6	34
489	Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells. <i>Biomacromolecules</i> , 2016 , 17, 2268-76	6.9	70
488	Analysing intracellular deformation of polymer capsules using structured illumination microscopy. <i>Nanoscale</i> , 2016 , 8, 11924-31	7.7	30
487	Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes. <i>ACS Applied Materials & Description (Communication)</i> 1, 3250-7	9.5	44
486	Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 6219-28	9.5	19
485	Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films. ACS Applied Materials & amp; Interfaces, 2016 , 8, 7449-55	9.5	23

484	Shape-Dependent Activation of Cytokine Secretion by Polymer Capsules in Human Monocyte-Derived Macrophages. <i>Biomacromolecules</i> , 2016 , 17, 1205-12	6.9	40
483	Differential Responses of Pattern Recognition Receptors to Outer Membrane Vesicles of Three Periodontal Pathogens. <i>PLoS ONE</i> , 2016 , 11, e0151967	3.7	51
482	Improved Auditory Nerve Survival with Nanoengineered Supraparticles for Neurotrophin Delivery into the Deafened Cochlea. <i>PLoS ONE</i> , 2016 , 11, e0164867	3.7	43
481	Achieving HIV-1 Control through RNA-Directed Gene Regulation. <i>Genes</i> , 2016 , 7,	4.2	8
480	Void Engineering in Metal®rganic Frameworks via Synergistic Etching and Surface Functionalization. <i>Advanced Functional Materials</i> , 2016 , 26, 5827-5834	15.6	196
479	Synthesis of Discrete Alkyl-Silica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes. <i>Angewandte Chemie</i> , 2016 , 128, 8515-8520	3.6	15
478	Engineering Polymer Hydrogel Nanoparticles for Lymph Node-Targeted Delivery. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1334-9	16.4	109
477	Synthesis of Discrete Alkyl-Silica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8375-80	16.4	54
476	A Framework to Account for Sedimentation and Diffusion in Particle-Cell Interactions. <i>Langmuir</i> , 2016 , 32, 12394-12402	4	41
475	Engineering Polymer Hydrogel Nanoparticles for Lymph Node-Targeted Delivery. <i>Angewandte Chemie</i> , 2016 , 128, 1356-1361	3.6	8
474	Immobilized Particle Imaging for Quantification of Nano- and Microparticles. <i>Langmuir</i> , 2016 , 32, 3532-	-404	12
473	Nanoengineered Templated Polymer Particles: Navigating the Biological Realm. <i>Accounts of Chemical Research</i> , 2016 , 49, 1139-48	24.3	105
472	Increasing the Impact of Materials in and beyond Bio-Nano Science. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13449-13456	16.4	39
471	Metal-Phenolic Supramolecular Gelation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 13803-1	38074	117
470	Modular assembly of superstructures from polyphenol-functionalized building blocks. <i>Nature Nanotechnology</i> , 2016 , 11, 1105-1111	28.7	251
469	Probing cell internalisation mechanics with polymer capsules. <i>Nanoscale</i> , 2016 , 8, 17096-17101	7.7	18
468	Nanoparticles assembled via pH-responsive reversible segregation of cyclodextrins in polyrotaxanes. <i>Nanoscale</i> , 2016 , 8, 15589-96	7.7	18
467	The "sweet" side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. ACS Nano, 2015, 9, 2157-66	16.7	157

(2015-2015)

466	Generalizable Strategy for Engineering Protein Particles with pH-Triggered Disassembly and Recoverable Protein Functionality. <i>ACS Macro Letters</i> , 2015 , 4, 160-164	6.6	12
465	Monoclonal antibody-functionalized multilayered particles: targeting cancer cells in the presence of protein coronas. <i>ACS Nano</i> , 2015 , 9, 2876-85	16.7	80
464	Interfacing materials science and biology for drug carrier design. Advanced Materials, 2015, 27, 2278-97	24	141
463	Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligands. <i>Chemistry of Materials</i> , 2015 , 27, 5825-5832	9.6	141
462	The role of capsule stiffness on cellular processing. <i>Chemical Science</i> , 2015 , 6, 3505-3514	9.4	82
461	Capsosomes as Long-Term Delivery Vehicles for Protein Therapeutics. <i>Langmuir</i> , 2015 , 31, 7776-81	4	26
460	Redox-Sensitive PEG-Polypeptide Nanoporous Particles for Survivin Silencing in Prostate Cancer Cells. <i>Biomacromolecules</i> , 2015 , 16, 2168-78	6.9	32
459	Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. <i>Science</i> , 2015 , 348, aaa24	93 13.3	1031
458	Axonal Regeneration and Myelination: Applicabilityof the Layer-by-Layer Technology 2015 , 525-546		O
457	Polyelectrolyte Multilayer Film for the Regulation of Stem Cells in Orthopedic Field 2015 , 507-524		
456	Polyelectrolyte Multilayers for Applications in Hepatic Tissue Engineering 2015 , 487-506		
455	LbL Nanofilms Through Biological Recognition for 3D Tissue Engineering 2015 , 419-452		
454	Polyelectrolyte Multilayers as Robust Coating for Cardiovascular Biomaterials 2015 , 399-418		
453	Polyelectrolyte Multilayer Film [A Smart Polymer for Vascular Tissue Engineering 2015 , 385-398		
452	Three-Dimensional Multilayered Devices for Biomedical Applications 2015 , 363-384		
451	Biocompatible and Biogenic Microcapsules 2015 , 343-362		
450	Nanoengineered Polymer Capsules: Moving into the Biological Realm 2015 , 309-342		
449	Layer-by-Layer Microcapsules Based on Functional Polysaccharides 2015 , 295-308		

 $\,$ Nanoparticle Functionalized Surfaces 2015, 279-294

447	Light-Addressable Microcapsules 2015 , 257-278		1
446	Multilayer Capsules for In vivo Biomedical Applications 2015 , 233-256		
445	Subcompartmentalized Surface-Adhering Polymer Thin Films Toward Drug Delivery Applications 2015 , 207-232		
444	LbL-Based Gene Delivery: Challenges and Promises 2015 , 195-206		O
443	Polyelectrolyte Multilayer Coatings for the Release and Transfer of Plasmid DNA 2015 , 171-194		2
442	Controlling Stem Cell Adhesion, Proliferation, and Differentiation with Layer-by-Layer Films 2015 , 103-	130	
441	Bioactive and Spatially Organized LbL Films 2015 , 79-102		1
440	Nanofilm Biomaterials: Dual Control of Mechanical and Bioactive Properties 2015 , 65-78		
439	Photocrosslinked Polyelectrolyte Films of ControlledStiffness to Direct Cell Behavior 2015 , 45-64		
438	The Interplay of Surface and Bulk Properties of Polyelectrolyte Multilayers in Determining Cell Adhesion 2015 , 31-44		
437	Chlorine resistant glutaraldehyde crosslinked polyelectrolyte multilayer membranes for desalination. <i>Advanced Materials</i> , 2015 , 27, 2791-6	24	107
436	Physicochemical and immunological assessment of engineered pure protein particles with different redox states. <i>ACS Nano</i> , 2015 , 9, 2433-44	16.7	29
435	Targeting Ability of Affibody-Functionalized Particles Is Enhanced by Albumin but Inhibited by Serum Coronas. <i>ACS Macro Letters</i> , 2015 , 4, 1259-1263	6.6	35
434	Structure Governs the Deformability of Polymer Particles in a Microfluidic Blood Capillary Model. <i>ACS Macro Letters</i> , 2015 , 4, 1205-1209	6.6	25
433	Flow-Based Assembly of Layer-by-Layer Capsules through Tangential Flow Filtration. <i>Langmuir</i> , 2015 , 31, 9054-60	4	27
432	Fabrication of ultra-thin polyrotaxane-based films via solid-state continuous assembly of polymers. <i>Chemical Communications</i> , 2015 , 51, 2025-8	5.8	10
431	Particle generation, functionalization and sortase A-mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. <i>Nature Protocols</i> , 2015 , 10, 90-105	18.8	42

430	The use of carbonic anhydrase to accelerate carbon dioxide capture processes. <i>Journal of Chemical Technology and Biotechnology</i> , 2015 , 90, 3-10	3.5	74
429	MetalDrganic Frameworks: Biomimetic Replication of Microscopic MetalDrganic Framework Patterns Using Printed Protein Patterns (Adv. Mater. 45/2015). <i>Advanced Materials</i> , 2015 , 27, 7483-7483	3 ²⁴	1
428	Membranes: Chlorine Resistant Glutaraldehyde Crosslinked Polyelectrolyte Multilayer Membranes for Desalination (Adv. Mater. 17/2015). <i>Advanced Materials</i> , 2015 , 27, 2811-2811	24	4
427	Nanoporous Metal-Phenolic Particles as Ultrasound Imaging Probes for Hydrogen Peroxide. <i>Advanced Healthcare Materials</i> , 2015 , 4, 2170-2175	10.1	42
426	Multifunctional Thrombin-Activatable Polymer Capsules for Specific Targeting to Activated Platelets. <i>Advanced Materials</i> , 2015 , 27, 5153-7	24	62
425	Boronate-Phenolic Network Capsules with Dual Response to Acidic pH and cis-Diols. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1796-801	10.1	43
424	Biomimetic Replication of Microscopic Metal-Organic Framework Patterns Using Printed Protein Patterns. <i>Advanced Materials</i> , 2015 , 27, 7293-8	24	85
423	Unravelling "off-target" effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells. <i>Nanoscale</i> , 2015 , 7, 6261-70	7.7	8
422	Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration. <i>Langmuir</i> , 2015 , 31, 6211-9	4	29
421	Assembly-Controlled Permeability of Layer-by-Layer Polymeric Microcapsules Using a Tapered Fluidized Bed. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27940-7	9.5	17
420	pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery. <i>Small</i> , 2015 , 11, 2032-6	11	160
419	Engineering Layer-by-Layer Thin Films for Multiscale and Multidrug Delivery Applications 2015 , 131-170)	
418	Controlling Cell Adhesion Using pH-ModifiedPolyelectrolyte Multilayer Films 2015 , 1-30		2
417	Engineering low-fouling and pH-degradable capsules through the assembly of metal-phenolic networks. <i>Biomacromolecules</i> , 2015 , 16, 807-14	6.9	93
416	Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. <i>ACS Nano</i> , 2015 , 9, 1294-304	16.7	110
415	Matrix-Bound Presentation of Bone Morphogenetic Protein 2 by Multilayer Films: Fundamental Studies and Applicationsto Orthopedics 2015 , 453-486		
414	Engineering poly(ethylene glycol) particles for improved biodistribution. ACS Nano, 2015, 9, 1571-80	16.7	119
413	Versatile Loading of Diverse Cargo into Functional Polymer Capsules. <i>Advanced Science</i> , 2015 , 2, 140000	073.6	32

412	Engineering multifunctional capsules through the assembly of metal-phenolic networks. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 5546-51	16.4	540
411	Peptide-tunable drug cytotoxicity via one-step assembled polymer nanoparticles. <i>Advanced Materials</i> , 2014 , 26, 2398-402	24	40
410	Emerging methods for the fabrication of polymer capsules. <i>Advances in Colloid and Interface Science</i> , 2014 , 207, 14-31	14.3	159
409	Mold-templated inorganic-organic hybrid supraparticles for codelivery of drugs. <i>Biomacromolecules</i> , 2014 , 15, 4146-51	6.9	17
408	Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model. <i>Advanced Materials</i> , 2014 , 26, 7295-9	24	89
407	Fundamental studies of hybrid poly(2-(diisopropylamino)ethyl methacrylate)/poly(N-vinylpyrrolidone) films and capsules. <i>Biomacromolecules</i> , 2014 , 15, 2784-92	6.9	7
406	Templated assembly of albumin-based nanoparticles for simultaneous gene silencing and magnetic resonance imaging. <i>Nanoscale</i> , 2014 , 6, 11676-80	7.7	29
405	Nanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides. <i>Soft Matter</i> , 2014 , 10, 2656-63	3.6	84
404	Engineering fluorescent poly(dopamine) capsules. <i>Langmuir</i> , 2014 , 30, 2921-5	4	96
403	Intracellularly Degradable Hydrogen-Bonded Polymer Capsules. <i>Advanced Functional Materials</i> , 2014 , 24, 6187-6194	15.6	43
402	Continuous assembly of polymers via solid phase reactions. <i>Chemical Science</i> , 2014 , 5, 3374-3380	9.4	9
401	Coordination-Driven Multistep Assembly of Metal P olyphenol Films and Capsules. <i>Chemistry of Materials</i> , 2014 , 26, 1645-1653	9.6	232
400	Fluidized bed layer-by-layer microcapsule formation. <i>Langmuir</i> , 2014 , 30, 10028-34	4	31
399	Engineering and evaluating drug delivery particles in microfluidic devices. <i>Journal of Controlled Release</i> , 2014 , 190, 139-49	11.7	88
398	Self-assembled stimuli-responsive polyrotaxane core-shell particles. <i>Biomacromolecules</i> , 2014 , 15, 53-9	6.9	33
397	Mesoporous silica supraparticles for sustained inner-ear drug delivery. <i>Small</i> , 2014 , 10, 4244-8	11	37
396	Spray assembled, cross-linked polyelectrolyte multilayer membranes for salt removal. <i>Langmuir</i> , 2014 , 30, 8784-90	4	19
395	Surface-initiated polymerization within mesoporous silica spheres for the modular design of charge-neutral polymer particles. <i>Langmuir</i> , 2014 , 30, 6286-93	4	28

394	Fabrication of Chiral Stationary Phases via Continuous Assembly of Polymers for Resolution of Enantiomers by Liquid Chromatography. <i>Macromolecular Materials and Engineering</i> , 2014 , 299, 1285-12	29 ^{3.9}	4	
393	A Cytoprotective and Degradable Metal P olyphenol Nanoshell for Single-Cell Encapsulation. <i>Angewandte Chemie</i> , 2014 , 126, 12628-12633	3.6	45	
392	Engineering Multifunctional Capsules through the Assembly of Metal P henolic Networks. <i>Angewandte Chemie</i> , 2014 , 126, 5652-5657	3.6	99	
391	Frontispiece: A Cytoprotective and Degradable Metal P olyphenol Nanoshell for Single-Cell Encapsulation. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, n/a-n/a	16.4	60	
390	Titelbild: Engineering Multifunctional Capsules through the Assembly of Metal P henolic Networks (Angew. Chem. 22/2014). <i>Angewandte Chemie</i> , 2014 , 126, 5579-5579	3.6	1	
389	Drug Delivery: Mesoporous Silica Supraparticles for Sustained Inner-Ear Drug Delivery (Small 21/2014). <i>Small</i> , 2014 , 10, 4243-4243	11	24	
388	Phenolic film engineering for template-mediated microcapsule preparation. <i>Polymer Journal</i> , 2014 , 46, 452-459	2.7	45	
387	A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12420-5	16.4	66	
386	In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. <i>Biomedical Optics Express</i> , 2014 , 5, 1250-61	3.5	32	
385	Endocytic capsule sensors for probing cellular internalization. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1551-4, 1524	10.1	14	
384	Tuning particle biodegradation through polymer-peptide blend composition. <i>Biomacromolecules</i> , 2014 , 15, 4429-38	6.9	8	
383	Endocytic pH-triggered degradation of nanoengineered multilayer capsules. <i>Advanced Materials</i> , 2014 , 26, 1901-5	24	55	
382	Fabrication of nanopatterned polymeric microparticles using a diatom as a sacrificial template. <i>RSC Advances</i> , 2014 , 4, 44418-44422	3.7	7	
381	Hydrogel Particles: Super-Soft Hydrogel Particles with Tunable Elasticity in a Microfluidic Blood Capillary Model (Adv. Mater. 43/2014). <i>Advanced Materials</i> , 2014 , 26, 7416-7416	24	1	
380	Biomedical Applications: Endocytic pH-Triggered Degradation of Nanoengineered Multilayer Capsules (Adv. Mater. 12/2014). <i>Advanced Materials</i> , 2014 , 26, 1947-1947	24		
379	Programmed degradation of DNA multilayer films. <i>Small</i> , 2014 , 10, 2902-9	11	4	
378	Multilayered polymer capsules with switchable permeability. <i>Polymer</i> , 2014 , 55, 6451-6459	3.9	26	
377	Convective polymer assembly for the deposition of nanostructures and polymer thin films on immobilized particles. <i>Nanoscale</i> , 2014 , 6, 13416-20	7.7	16	

376	Engineering enzyme-cleavable hybrid click capsules with a pH-sheddable coating for intracellular degradation. <i>Small</i> , 2014 , 10, 4080-6	11	16
375	Assembly of Layer-by-Layer Particles and Their Interactions with Biological Systems. <i>Chemistry of Materials</i> , 2014 , 26, 452-460	9.6	160
374	Advanced subcompartmentalized microreactors: polymer hydrogel carriers encapsulating polymer capsules and liposomes. <i>Small</i> , 2013 , 9, 3573-83	11	38
373	Targeting dendritic cells: the role of specific receptors in the internalization of polymer capsules. <i>Advanced Healthcare Materials</i> , 2013 , 2, 940-4	10.1	37
372	Tuning the mechanical properties of nanoporous hydrogel particles via polymer cross-linking. <i>Langmuir</i> , 2013 , 29, 9824-31	4	33
371	Near-incompressible faceted polymer microcapsules from metal-organic framework templates. <i>Advanced Materials</i> , 2013 , 25, 5767-71	24	35
370	Lysine functionalised amyloid fibrils: the design and assembly of a TTR1-based peptide. <i>Soft Matter</i> , 2013 , 9, 3315	3.6	10
369	Assembly of Nanostructured Films with Hydrophobic Subcompartments via Continuous Assembly of Polymers. <i>Macromolecules</i> , 2013 , 46, 7789-7796	5.5	16
368	Mechanical characterization of ultrasonically synthesized microbubble shells by flow cytometry and AFM. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 10920-5	9.5	17
367	One-step assembly of coordination complexes for versatile film and particle engineering. <i>Science</i> , 2013 , 341, 154-7	33.3	1227
366	(Super)hydrophobic and Multilayered Amphiphilic Films Prepared by Continuous Assembly of Polymers. <i>Advanced Functional Materials</i> , 2013 , 23, 5159-5166	15.6	25
365	Layer-by-layer polymer coating on discrete particles of cubic lyotropic liquid crystalline dispersions (cubosomes). <i>Langmuir</i> , 2013 , 29, 12891-900	4	36
364	Factors influencing the growth and topography of nanoscale films fabricated by ROMP-mediated continuous assembly of polymers. <i>Polymer Chemistry</i> , 2013 , 4, 68-75	4.9	21
363	Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. <i>ACS Nano</i> , 2013 , 7, 10960-70	16.7	210
362	Shape-dependent cellular processing of polyelectrolyte capsules. ACS Nano, 2013, 7, 522-30	16.7	123
361	Particle carriers for combating multidrug-resistant cancer. ACS Nano, 2013, 7, 9512-7	16.7	84
360	Multivalent directed assembly of colloidal particles. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3314-6	16.4	7
359	Stiffness-mediated adhesion of cervical cancer cells to soft hydrogel films. <i>Soft Matter</i> , 2013 , 9, 4580	3.6	23

358	Formation and degradation of layer-by-layer-assembled polyelectrolyte polyrotaxane capsules. <i>Langmuir</i> , 2013 , 29, 7203-8	4	29
357	Particles on the move: intracellular trafficking and asymmetric mitotic partitioning of nanoporous polymer particles. <i>ACS Nano</i> , 2013 , 7, 5558-67	16.7	31
356	Mechanically tunable, self-adjuvanting nanoengineered polypeptide particles. <i>Advanced Materials</i> , 2013 , 25, 3468-72	24	72
355	Preparation of nano- and microcapsules by electrophoretic polymer assembly. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6455-8	16.4	65
354	Clickable Poly(2-oxazoline) Architectures for the Fabrication of Low-Fouling Polymer Capsules. <i>ACS Macro Letters</i> , 2013 , 2, 1069-1072	6.6	41
353	Mechanics of pH-responsive hydrogel capsules. <i>Langmuir</i> , 2013 , 29, 9814-23	4	47
352	Liquid crystal chemical sensors that cells can wear. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 14011-5	16.4	62
351	Low-fouling, biospecific films prepared by the continuous assembly of polymers. <i>Biomacromolecules</i> , 2013 , 14, 2477-83	6.9	13
350	Immersive polymer assembly on immobilized particles for automated capsule preparation. <i>Advanced Materials</i> , 2013 , 25, 6874-8	24	50
349	Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10894-8	11.5	89
348	Hydrogels: Advanced Subcompartmentalized Microreactors: Polymer Hydrogel Carriers Encapsulating Polymer Capsules and Liposomes (Small 21/2013). <i>Small</i> , 2013 , 9, 3572-3572	11	2
347	Design of degradable click delivery systems. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 894-902	4.8	13
346	Engineering particles for therapeutic delivery: Prospects and challenges. <i>Proceedings of the Royal Society of Victoria</i> , 2013 , 125, 77	1.1	1
345	Multivalente gerichtete Organisation von kolloidalen Partikeln. <i>Angewandte Chemie</i> , 2013 , 125, 3396-3	3 <u>9</u> .8	1
344	Liquid Crystal Chemical Sensors That Cells Can Wear. <i>Angewandte Chemie</i> , 2013 , 125, 14261-14265	3.6	4
343	Polymer Films: (Super)hydrophobic and Multilayered Amphiphilic Films Prepared by Continuous Assembly of Polymers (Adv. Funct. Mater. 41/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 5216-5216	5 ^{15.6}	
342	Polymerization: Assembly of Free-Standing Polypeptide Films via the Synergistic Combination of Hyperbranched Macroinitiators, the Grafting-From Approach, and Cross-Chain Termination (Adv. Mater. 33/2013). <i>Advanced Materials</i> , 2013 , 25, 4618-4618	24	
341	Assembly of free-standing polypeptide films via the synergistic combination of hyperbranched macroinitiators, the grafting-from approach, and cross-chain termination. <i>Advanced Materials</i> , 2013 , 25, 4619-24	24	13

340	Preparation of Nano- and Microcapsules by Electrophoretic Polymer Assembly. <i>Angewandte Chemie</i> , 2013 , 125, 6583-6586	3.6	5
339	Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization. <i>Journal of Membrane Science</i> , 2012 , 409-410, 9-15	9.6	33
338	Synthesis and functionalization of nanoengineered materials using click chemistry. <i>Progress in Polymer Science</i> , 2012 , 37, 985-1003	29.6	87
337	Engineered Bacterially Expressed Polypeptides: Assembly into Polymer Particles with Tailored Degradation Profiles. <i>Angewandte Chemie</i> , 2012 , 124, 475-479	3.6	
336	Engineered bacterially expressed polypeptides: assembly into polymer particles with tailored degradation profiles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 460-4	16.4	3
335	Tailoring the chain packing in ultrathin polyelectrolyte films formed by sequential adsorption: nanoscale probing by positron annihilation spectroscopy. <i>Journal of the American Chemical Society</i> , 2012 , 134, 19808-19	16.4	21
334	Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting. <i>ACS Nano</i> , 2012 , 6, 1463-72	16.7	70
333	Emerging techniques in proteomics for probing nano-bio interactions. ACS Nano, 2012, 6, 10438-48	16.7	94
332	Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. <i>Biomacromolecules</i> , 2012 , 13, 2225-8	6.9	265
331	Ultrathin, bioresponsive and drug-functionalized protein capsules. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21434		42
330	Probing the dynamic nature of DNA multilayer films using Ffster resonance energy transfer. <i>Langmuir</i> , 2012 , 28, 12527-35	4	8
329	Confinement of Acoustic Cavitation for the Synthesis of Protein-Shelled Nanobubbles for Diagnostics and Nucleic Acid Delivery. <i>ACS Macro Letters</i> , 2012 , 1, 853-856	6.6	31
328	Targeting cancer cells: controlling the binding and internalization of antibody-functionalized capsules. <i>ACS Nano</i> , 2012 , 6, 6667-74	16.7	70
327	Engineering cellular degradation of multilayered capsules through controlled cross-linking. <i>ACS Nano</i> , 2012 , 6, 10186-94	16.7	46
326	Engineered Layer-by-Layer Assembled Capsules for Biomedical Applications 2012 , 801-829		1
325	Template-Directed Synthesis of Silica Nanowires and Nanotubes from Cylindrical Core B hell Polymer Brushes. <i>Chemistry of Materials</i> , 2012 , 24, 1802-1810	9.6	96
324	Modular click assembly of degradable capsules using polyrotaxanes. ACS Nano, 2012, 6, 4686-93	16.7	27
323	Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. <i>Langmuir</i> , 2012 , 28, 13798-807	4	143

322	Template-Directed Mild Synthesis of Anatase Hybrid Nanotubes within Cylindrical CoreBhellCorona Polymer Brushes. <i>Macromolecules</i> , 2012 , 45, 6981-6988	5.5	64
321	Protein capsules assembled via isobutyramide grafts: sequential growth, biofunctionalization, and cellular uptake. <i>ACS Nano</i> , 2012 , 6, 7584-94	16.7	44
320	Flake-shell capsules: adjustable inorganic structures. <i>Small</i> , 2012 , 8, 2345-9	11	51
319	Engineering particles for therapeutic delivery: prospects and challenges. ACS Nano, 2012, 6, 3663-9	16.7	147
318	Photoinitiated alkyne-azide click and radical cross-linking reactions for the patterning of PEG hydrogels. <i>Biomacromolecules</i> , 2012 , 13, 889-95	6.9	82
317	Phototriggered, Metal-Free Continuous Assembly of Polymers for the Fabrication of Ultrathin Films. <i>ACS Macro Letters</i> , 2012 , 1, 1020-1023	6.6	28
316	Templated Assembly of pH-Labile Polymer-Drug Particles for Intracellular Drug Delivery. <i>Advanced Functional Materials</i> , 2012 , 22, 4718-4723	15.6	118
315	The role of particle geometry and mechanics in the biological domain. <i>Advanced Healthcare Materials</i> , 2012 , 1, 35-47	10.1	87
314	Nanoporous peptide particles for encapsulating and releasing neurotrophic factors in an animal model of neurodegeneration. <i>Advanced Materials</i> , 2012 , 24, 3362-6	24	64
313	Bio-Click Chemistry: Enzymatic Functionalization of PEGylated Capsules for Targeting Applications. <i>Angewandte Chemie</i> , 2012 , 124, 7244-7248	3.6	22
312	Bio-click chemistry: enzymatic functionalization of PEGylated capsules for targeting applications. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7132-6	16.4	66
311	Drug Delivery: Templated Assembly of pH-Labile Polymer-Drug Particles for Intracellular Drug Delivery (Adv. Funct. Mater. 22/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 4844-4844	15.6	2
310	Converging layer-by-layer polyelectrolyte microcapsule and cubic lyotropic liquid crystalline nanoparticle approaches for molecular encapsulation. <i>Soft Matter</i> , 2011 , 7, 4257	3.6	48
309	Redox-active polymer microcapsules for the delivery of a survivin-specific siRNA in prostate cancer cells. <i>ACS Nano</i> , 2011 , 5, 1335-44	16.7	90
308	Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. <i>Macromolecules</i> , 2011 , 44, 1194-1202	5.5	38
307	Modular assembly of layer-by-layer capsules with tailored degradation profiles. <i>Langmuir</i> , 2011 , 27, 127	′5 <u>+</u> 80	41
306	Toward therapeutic delivery with layer-by-layer engineered particles. ACS Nano, 2011, 5, 4252-7	16.7	99
305	Degradation of liposomal subcompartments in PEGylated capsosomes. <i>Soft Matter</i> , 2011 , 7, 9638	3.6	25

304	Tuning the permeability of polymer hydrogel capsules: an investigation of cross-linking density, membrane thickness, and cross-linkers. <i>Langmuir</i> , 2011 , 27, 1724-30	4	52
303	Dopamine-Mediated Continuous Assembly of Biodegradable Capsules. <i>Chemistry of Materials</i> , 2011 , 23, 3141-3143	9.6	113
302	Multicompartment Particle Assemblies for Bioinspired Encapsulated Reactions. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2639-2649	6.4	92
301	Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. <i>Nature Nanotechnology</i> , 2011 , 6, 358-63	28.7	452
300	Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. <i>Chemical Society Reviews</i> , 2011 , 40, 19-29	58.5	305
299	Thin multilayer films and microcapsules containing DNA quadruplex motifs. <i>Small</i> , 2011 , 7, 101-11	11	11
298	Assembly and degradation of low-fouling click-functionalized poly(ethylene glycol)-based multilayer films and capsules. <i>Small</i> , 2011 , 7, 1075-85	11	53
297	Polymersome-loaded capsules for controlled release of DNA. <i>Small</i> , 2011 , 7, 2109-19	11	97
296	Nanoengineered films via surface-confined continuous assembly of polymers. <i>Small</i> , 2011 , 7, 2863-7	11	39
295	Capsosomes with "free-floating" liposomal subcompartments. Advanced Materials, 2011, 23, 4082-7	24	78
294	Construction and degradation of polyrotaxane multilayers. <i>Advanced Materials</i> , 2011 , 23, 3026-9	24	41
293	Cellular association and cargo release of redox-responsive polymer capsules mediated by exofacial thiols. <i>Advanced Materials</i> , 2011 , 23, 3916-21	24	89
292	Charge-shifting click capsules with dual-responsive cargo release mechanisms. <i>Advanced Materials</i> , 2011 , 23, H273-7	24	98
291	Bromoisobutyramide as an intermolecular surface binder for the preparation of free-standing biopolymer assemblies. <i>Advanced Materials</i> , 2011 , 23, 5668-73	24	38
2 90	Controlled Degradation of Polyrotaxane Multilayers: Construction and Degradation of Polyrotaxane Multilayers (Adv. Mater. 27/2011). <i>Advanced Materials</i> , 2011 , 23, 2996-2996	24	
289	Smart[Capsules for Drug Release: Charge-Shifting Click Capsules with Dual-Responsive Cargo Release Mechanisms (Adv. Mater. 36/2011). <i>Advanced Materials</i> , 2011 , 23, H210-H210	24	
288	ATRP-mediated continuous assembly of polymers for the preparation of nanoscale films. <i>Chemical Communications</i> , 2011 , 47, 12601-3	5.8	42
287	One-pot ultrasonic synthesis of multifunctional microbubbles and microcapsules using synthetic thiolated macromolecules. <i>Chemical Communications</i> , 2011 , 47, 4096-8	5.8	34

286	Triggered cargo release by encapsulated enzymatic catalysis in capsosomes. <i>Nano Letters</i> , 2011 , 11, 49	58-63	76
285	Nanostructured polymer assemblies formed at interfaces: applications from immobilization and encapsulation to stimuli-responsive release. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4782-801	3.6	78
284	New insights into the substrate-plasma polymer interface. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 6495-502	3.4	23
283	Challenges facing colloidal delivery systems: From synthesis to the clinic. <i>Current Opinion in Colloid and Interface Science</i> , 2011 , 16, 171-181	7.6	87
282	Controlled release of DNA from poly(vinylpyrrolidone) capsules using cleavable linkers. <i>Biomaterials</i> , 2011 , 32, 6277-84	15.6	44
281	Monitoring ion-channel function in real time through quantum decoherence. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 18777-82	11.5	92
280	Reaction Vessels Assembled by the Sequential Adsorption of Polymers. <i>Advances in Polymer Science</i> , 2010 , 155-179	1.3	2
279	Uptake and intracellular fate of disulfide-bonded polymer hydrogel capsules for Doxorubicin delivery to colorectal cancer cells. <i>ACS Nano</i> , 2010 , 4, 2928-36	16.7	147
278	Engineering advanced capsosomes: maximizing the number of subcompartments, cargo retention, and temperature-triggered reaction. <i>ACS Nano</i> , 2010 , 4, 1351-61	16.7	129
277	Influence of salt concentration on the assembly of DNA multilayer films. <i>Langmuir</i> , 2010 , 26, 3415-22	4	27
276	Biodegradable click capsules with engineered drug-loaded multilayers. ACS Nano, 2010, 4, 1653-63	16.7	174
275	Surface "click" chemistry on brominated plasma polymer thin films. <i>Langmuir</i> , 2010 , 26, 3388-93	4	44
274	Targeting of cancer cells using click-functionalized polymer capsules. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15881-3	16.4	151
273	Multilayer buildup and biofouling characteristics of PSS-b-PEG containing films. <i>Langmuir</i> , 2010 , 26, 973	20 _‡ 7	34
272	Noncovalent liposome linkage and miniaturization of capsosomes for drug delivery. <i>Biomacromolecules</i> , 2010 , 11, 3548-55	6.9	58
271	Active multilayered capsules for in vivo bone formation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 3406-11	11.5	109
270	Effect of oligonucleotide length on the assembly of DNA materials: molecular dynamics simulations of layer-by-layer DNA films. <i>Langmuir</i> , 2010 , 26, 17339-47	4	28
269	Fabrication of asymmetric "Janus" particles via plasma polymerization. <i>Chemical Communications</i> , 2010 , 46, 5121-3	5.8	47

268	Capsosomes with Multilayered Subcompartments: Assembly and Loading with Hydrophobic Cargo. <i>Advanced Functional Materials</i> , 2010 , 20, 59-66	15.6	106
267	Monodisperse Polymer Capsules: Tailoring Size, Shell Thickness, and Hydrophobic Cargo Loading via Emulsion Templating. <i>Advanced Functional Materials</i> , 2010 , 20, 1625-1631	15.6	251
266	A biomolecular "ship-in-a-bottle": continuous RNA synthesis within hollow polymer hydrogel assemblies. <i>Advanced Materials</i> , 2010 , 22, 720-3	24	50
265	Encapsulation of water-insoluble drugs in polymer capsules prepared using mesoporous silica templates for intracellular drug delivery. <i>Advanced Materials</i> , 2010 , 22, 4293-7	24	171
264	Bypassing multidrug resistance in cancer cells with biodegradable polymer capsules. <i>Advanced Materials</i> , 2010 , 22, 5398-403	24	78
263	Drug Delivery: Bypassing Multidrug Resistance in Cancer Cells with Biodegradable Polymer Capsules (Adv. Mater. 47/2010). <i>Advanced Materials</i> , 2010 , 22, 5324-5324	24	2
262	Gesteuerte Freisetzung von verkapselten Materialien. Angewandte Chemie, 2010 , 122, 2723-2725	3.6	14
261	Triggering release of encapsulated cargo. Angewandte Chemie - International Edition, 2010 , 49, 2664-6	16.4	88
2 60	Peptide nucleic acid films and capsules: assembly and enzymatic degradation. <i>Macromolecular Bioscience</i> , 2010 , 10, 488-95	5.5	35
259	Poly(L-lysine) nanostructured particles for gene delivery and hormone stimulation. <i>Biomaterials</i> , 2010 , 31, 1699-706	15.6	71
258	Layer-by-layer-assembled capsules and films for therapeutic delivery. Small, 2010, 6, 1836-52	11	264
257	Subcompartmentalized polymer hydrogel capsules with selectively degradable carriers and subunits. <i>Small</i> , 2010 , 6, 1558-64	11	46
256	Novel Engineered Ion Channel Provides Controllable Ion Permeability for Polyelectrolyte Microcapsules Coated with a Lipid Membrane. <i>Advanced Functional Materials</i> , 2009 , 19, 201-208	15.6	25
255	Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses. <i>Advanced Functional Materials</i> , 2009 , 19, 2260-2265	15.6	197
254	Degradable, Surfactant-Free, Monodisperse Polymer-Encapsulated Emulsions as Anticancer Drug Carriers. <i>Advanced Materials</i> , 2009 , 21, 1820-1824	24	167
253	Click-engineered, bioresponsive, drug-loaded PEG spheres. <i>Advanced Materials</i> , 2009 , 21, 4348-52	24	33
252	Size-Dependent Ordering of Liquid Crystals Observed in Polymeric Capsules with Micrometer and Smaller Diameters. <i>Angewandte Chemie</i> , 2009 , 121, 1680-1683	3.6	14
251	Triggered Enzymatic Degradation of DNA within Selectively Permeable Polymer Capsule Microreactors. <i>Angewandte Chemie</i> , 2009 , 121, 335-338	3.6	12

(2009-2009)

250	A Microreactor with Thousands of Subcompartments: Enzyme-Loaded Liposomes within Polymer Capsules. <i>Angewandte Chemie</i> , 2009 , 121, 4423-4426	3.6	28
249	Size-dependent ordering of liquid crystals observed in polymeric capsules with micrometer and smaller diameters. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 1652-5	16.4	118
248	Triggered enzymatic degradation of DNA within selectively permeable polymer capsule microreactors. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 329-32	16.4	94
247	A microreactor with thousands of subcompartments: enzyme-loaded liposomes within polymer capsules. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 4359-62	16.4	187
246	A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules. <i>Biomaterials</i> , 2009 , 30, 5178-86	15.6	114
245	Peptide-functionalized, low-biofouling click multilayers for promoting cell adhesion and growth. <i>Small</i> , 2009 , 5, 444-8	11	53
244	Controlled degradation of DNA capsules with engineered restriction-enzyme cut sites. <i>Small</i> , 2009 , 5, 1418-21	11	69
243	Stabilization of polymer-hydrogel capsules via thiol-disulfide exchange. <i>Small</i> , 2009 , 5, 2601-10	11	87
242	Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules. <i>Biomaterials</i> , 2009 , 30, 5988-98	15.6	96
241	Low-fouling poly(N-vinyl pyrrolidone) capsules with engineered degradable properties. <i>Biomacromolecules</i> , 2009 , 10, 2839-46	6.9	99
240	Assembly and functionalization of DNA-polymer microcapsules. ACS Nano, 2009, 3, 234-40	16.7	98
239	Capsosomes: subcompartmentalizing polyelectrolyte capsules using liposomes. <i>Langmuir</i> , 2009 , 25, 67	2 5 -32	120
238	Mesoporous Silica-Templated Assembly of Luminescent Polyester Particles. <i>Chemistry of Materials</i> , 2009 , 21, 4310-4315	9.6	24
237	Optically Characterized DNA Multilayered Assemblies and Phenomenological Modeling of Layer-by-Layer Hybridization. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 21185-21195	3.8	27
236	Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets. <i>Langmuir</i> , 2009 , 25, 9016-24	4	86
235	Tuning the formation and degradation of layer-by-layer assembled polymer hydrogel microcapsules. <i>Langmuir</i> , 2009 , 25, 14079-85	4	112
234	Tunable UV-Responsive OrganicIhorganic Hybrid Capsules. <i>Chemistry of Materials</i> , 2009 , 21, 195-197	9.6	66
233	Self-Polymerization of Dopamine as a Versatile and Robust Technique to Prepare Polymer Capsules. <i>Chemistry of Materials</i> , 2009 , 21, 3042-3044	9.6	404

232	Stabilization and Functionalization of Polymer Multilayers and Capsules via ThiolEne Click Chemistry. <i>Chemistry of Materials</i> , 2009 , 21, 576-578	9.6	105
231	A protective vaccine delivery system for in vivo T cell stimulation using nanoengineered polymer hydrogel capsules. <i>ACS Nano</i> , 2009 , 3, 3391-400	16.7	162
230	Polymer hydrogel capsules: en route toward synthetic cellular systems. <i>Nanoscale</i> , 2009 , 1, 68-73	7.7	161
229	Nanoporous colloids: building blocks for a new generation of structured materials. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6451		136
228	Templated synthesis of single-component polymer capsules and their application in drug delivery. <i>Nano Letters</i> , 2008 , 8, 1741-5	11.5	232
227	Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly. <i>Chemistry of Materials</i> , 2008 , 20, 848-858	9.6	708
226	Disulfide-Stabilized Poly(methacrylic acid) Capsules: Formation, Cross-Linking, and Degradation Behavior. <i>Chemistry of Materials</i> , 2008 , 20, 2655-2661	9.6	185
225	Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. <i>Lab on A Chip</i> , 2008 , 8, 2182-7	7.2	101
224	Ultrasonic synthesis of stable, functional lysozyme microbubbles. <i>Langmuir</i> , 2008 , 24, 10078-83	4	133
223	Low-fouling, biofunctionalized, and biodegradable click capsules. <i>Biomacromolecules</i> , 2008 , 9, 3389-96	6.9	113
222	Manipulating the salt and thermal stability of DNA multilayer films via oligonucleotide length. <i>Biomacromolecules</i> , 2008 , 9, 3070-8	6.9	46
221	Synthesis, multilayer film assembly, and capsule formation of macromolecularly engineered acrylic acid and styrene sulfonate block copolymers. <i>Langmuir</i> , 2008 , 24, 8981-90	4	30
220	Probing the conformation of polyelectrolytes in mesoporous silica spheres. <i>Langmuir</i> , 2008 , 24, 4224-36	04	31
219	pH-Responsive Poly(acrylic acid) Core Cross-Linked Star Polymers: Morphology Transitions in Solution and Multilayer Thin Films. <i>Macromolecules</i> , 2008 , 41, 2620-2626	5.5	111
218	Characterization of the growth of polyelectrolyte multilayers formed at interfaces between aqueous phases and thermotropic liquid crystals. <i>Langmuir</i> , 2008 , 24, 5534-42	4	16
217	Monodisperse Emulsions through Templating Polyelectrolyte Multilayer Capsules. <i>Chemistry of Materials</i> , 2008 , 20, 2063-2065	9.6	62
216	Stabilization of DNA multilayer films through oligonucleotide crosslinking. <i>Small</i> , 2008 , 4, 612-8	11	42
215	Polyelectrolyte Blend Multilayers: A Versatile Route to Engineering Interfaces and Films. <i>Advanced Functional Materials</i> , 2008 , 18, 17-26	15.6	70

(2006-2008)

214	Integrated Catalytic Activity of Patterned Multilayer Films Based on pH-Induced Electrostatic Properties of Enzymes. <i>Advanced Materials</i> , 2008 , 20, 1843-1848	24	22
213	Binding, Internalization, and Antigen Presentation of Vaccine-Loaded Nanoengineered Capsules in Blood. <i>Advanced Materials</i> , 2008 , 20, 4698-4703	24	146
212	Influence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells. <i>ACS Nano</i> , 2007 , 1, 93-1	o2 ^{6.7}	141
211	Probing the permeability of polyelectrolyte multilayer capsules via a molecular beacon approach. <i>Langmuir</i> , 2007 , 23, 4554-62	4	49
210	Compositional Engineering of Polyelectrolyte Blend Capsules. <i>Macromolecules</i> , 2007 , 40, 7581-7589	5.5	11
209	Infiltration of Macromolecules into Nanoporous Silica Particles. <i>Macromolecules</i> , 2007 , 40, 7594-7600	5.5	57
208	Ultrathin, responsive polymer click capsules. <i>Nano Letters</i> , 2007 , 7, 1706-10	11.5	185
207	Exploiting the directionality of DNA: controlled shrinkage of engineered oligonucleotide capsules. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2677-80	16.4	51
206	Exploiting the Directionality of DNA: Controlled Shrinkage of Engineered Oligonucleotide Capsules. <i>Angewandte Chemie</i> , 2007 , 119, 2731-2734	3.6	12
205	Tunable Superhydrophobic and Optical Properties of Colloidal Films Coated with Block-Copolymer-Micelles/Micelle-Multilayers. <i>Advanced Materials</i> , 2007 , 19, 4364-4369	24	96
204	Layer-by-layer assembly of weak-strong copolymer polyelectrolytes: A route to morphological control of thin films. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 4341-4351	2.5	28
203	Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. <i>Nature Nanotechnology</i> , 2007 , 2, 790-5	28.7	238
202	Poly(vinylpyrrolidone) for bioconjugation and surface ligand immobilization. <i>Biomacromolecules</i> , 2007 , 8, 2950-3	6.9	87
201	Next generation, sequentially assembled ultrathin films: beyond electrostatics. <i>Chemical Society Reviews</i> , 2007 , 36, 707-18	58.5	405
200	Polyelectrolyte blend multilayer films: surface morphology, wettability, and protein adsorption characteristics. <i>Langmuir</i> , 2007 , 23, 4944-9	4	54
199	A general approach for DNA encapsulation in degradable polymer microcapsules. <i>ACS Nano</i> , 2007 , 1, 63-9	16.7	184
198	Degradable polyelectrolyte capsules filled with oligonucleotide sequences. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 7743-5	16.4	197
197	Degradable Polyelectrolyte Capsules Filled with Oligonucleotide Sequences. <i>Angewandte Chemie</i> , 2006 , 118, 7907-7909	3.6	29

196	Multivalent-Ion-Mediated Stabilization of Hydrogen-Bonded Multilayers. <i>Advanced Functional Materials</i> , 2006 , 16, 1179-1186	15.6	21
195	Nanoporous Protein Particles Through Templating Mesoporous Silica Spheres. <i>Advanced Materials</i> , 2006 , 18, 795-800	24	110
194	Formation of Polyelectrolyte Multilayer Films at Interfaces Between Thermotropic Liquid Crystals and Aqueous Phases. <i>Advanced Materials</i> , 2006 , 18, 850-854	24	33
193	Targeting and Uptake of Multilayered Particles to Colorectal Cancer Cells. <i>Advanced Materials</i> , 2006 , 18, 1998-2003	24	165
192	Bioinspired colloidal systems via layer-by-layer assembly. <i>Soft Matter</i> , 2006 , 2, 18-23	3.6	134
191	Approaches to quantifying and visualizing polyelectrolyte multilayer film formation on particles. <i>Analytical Chemistry</i> , 2006 , 78, 5913-9	7.8	53
190	Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly. <i>Nano Letters</i> , 2006 , 6, 2243-8	11.5	138
189	Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactors. <i>Chemical Communications</i> , 2006 , 2150-2	5.8	49
188	Template Synthesis of Stimuli-Responsive Nanoporous Polymer-Based Spheres via Sequential Assembly. <i>Chemistry of Materials</i> , 2006 , 18, 4089-4100	9.6	89
187	Preparation of Nanoporous Polyelectrolyte Multilayer Films via Nanoparticle Templating. <i>Chemistry of Materials</i> , 2006 , 18, 5480-5485	9.6	47
186	Polyelectrolyte Functionalization of Electrospun Fibers. <i>Chemistry of Materials</i> , 2006 , 18, 2397-2403	9.6	96
185	Disulfide cross-linked polymer capsules: en route to biodeconstructible systems. <i>Biomacromolecules</i> , 2006 , 7, 27-30	6.9	304
184	Effect of UVIrradiation on Polyelectrolyte Multilayered Films and Hollow Capsules Prepared by Layer-by-Layer Assembly. <i>Macromolecules</i> , 2006 , 39, 8067-8074	5.5	47
183	Assembly of ultrathin polymer multilayer films by click chemistry. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9318-9	16.4	337
182	Surface interactions during polyelectrolyte multilayer build-up. 2. The effect of ionic strength on the structure of preformed multilayers. <i>Langmuir</i> , 2006 , 22, 4153-7	4	16
181	Compositional and structural engineering of DNA multilayer films. <i>Langmuir</i> , 2006 , 22, 3251-8	4	91
180	Modulating the pattern quality of micropatterned multilayer films prepared by layer-by-layer self-assembly. <i>Langmuir</i> , 2006 , 22, 1356-64	4	39
179	Nanoporous block copolymer micelle/micelle multilayer films with dual optical properties. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9935-42	16.4	205

(2005-2006)

178	Layer-by-layer engineered capsules and their applications. <i>Current Opinion in Colloid and Interface Science</i> , 2006 , 11, 203-209	7.6	510
177	A molecular beacon approach to measuring the DNA permeability of thin films. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10014-5	16.4	37
176	Homogeneous, competitive fluorescence quenching immunoassay based on gold nanoparticle/polyelectrolyte coated latex particles. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 19604-1	2 ^{3.4}	99
175	Enzyme Multilayer-Modified Porous Membranes as Biocatalysts. <i>Chemistry of Materials</i> , 2005 , 17, 171-1	1 75 .6	96
174	Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation. <i>Chemistry of Materials</i> , 2005 , 17, 953-961	9.6	484
173	Thermoresponsive Nanoassemblies: Layer-by-Layer Assembly of Hydrophilic⊞ydrophobic Alternating Copolymers. <i>Macromolecules</i> , 2005 , 38, 3414-3419	5.5	60
172	Investigation of the Interactions between Ligand-Stabilized Gold Nanoparticles and Polyelectrolyte Multilayer Films. <i>Chemistry of Materials</i> , 2005 , 17, 4547-4553	9.6	100
171	Light-responsive polyelectrolyte/gold nanoparticle microcapsules. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3071-6	3.4	351
170	Assembly of multilayer films from polyelectrolytes containing weak and strong acid moieties. <i>Langmuir</i> , 2005 , 21, 8785-92	4	68
169	DNA multilayer films on planar and colloidal supports: sequential assembly of like-charged polyelectrolytes. <i>Nano Letters</i> , 2005 , 5, 953-6	11.5	187
168	Optical properties of nanoparticle-based metallodielectric inverse opals. Small, 2005, 1, 122-30	11	44
167	Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2888-92	16.4	187
166	Nanoporous Polyelectrolyte Spheres Prepared by Sequentially Coating Sacrificial Mesoporous Silica Spheres. <i>Angewandte Chemie</i> , 2005 , 117, 2948-2952	3.6	31
165	Monodisperse Polyelectrolyte-Supported Asymmetric Lipid-Bilayer Vesicles. <i>Advanced Materials</i> , 2005 , 17, 738-743	24	54
164	Mesoporous Silica Particles as Templates for Preparing Enzyme-Loaded Biocompatible Microcapsules. <i>Advanced Materials</i> , 2005 , 17, 1737-1741	24	217
163	Nanoporous Polymer Thin Films via Polyelectrolyte Templating. <i>Advanced Materials</i> , 2005 , 17, 2058-20	624	87
162	Stabilization of Hydrogen-Bonded Poly(N-isopropylacrylamide) Multilayers by a Dual Electrostatic/Hydrogen Bonding Copolymer. <i>Australian Journal of Chemistry</i> , 2005 , 58, 442	1.2	7
161	Colloid surface engineering via deposition of multilayered thin films from polyelectrolyte blend solutions. <i>Langmuir</i> , 2005 , 21, 4328-33	4	49

160	Surface plasmon resonance in gold nanoparticle infiltrated dielectric opals. <i>Journal of Applied Physics</i> , 2005 , 97, 086103	2.5	25
159	Fabrication of polyelectrolyte multilayer films comprising nanoblended layers. <i>Journal of the American Chemical Society</i> , 2004 , 126, 2270-1	16.4	98
158	Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 5954-7	16.4	305
157	Macroporous Zeolitic Membrane Bioreactors. <i>Advanced Functional Materials</i> , 2004 , 14, 1012-1018	15.6	110
156	Optically Addressable Nanostructured Capsules. Advanced Materials, 2004, 16, 2184-2189	24	359
155	Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles. <i>Angewandte Chemie</i> , 2004 , 116, 6080-6083	3.6	28
154	Reflectivity behavior of opals of gold nanoparticle coated spheres. <i>Applied Physics Letters</i> , 2004 , 84, 39	069 . 496	5230
153	Functionalization of Colloids with Robust Inorganic-Based Lipid Coatings. <i>Macromolecules</i> , 2004 , 37, 99	94 7.9 95	5 3 38
152	Fabrication of PolymerNanoparticle Composite Inverse Opals by a One-Step Electrochemical Co-deposition Process. <i>Nano Letters</i> , 2004 , 4, 177-181	11.5	64
151	Preparation of J-aggregate liposome dispersions and their chromic transformation. <i>Langmuir</i> , 2004 , 20, 5718-23	4	17
150	Surface interactions during polyelectrolyte multilayer buildup. 1. Interactions and layer structure in dilute electrolyte solutions. <i>Langmuir</i> , 2004 , 20, 5432-8	4	46
149	Two-Component, Ultrathin Microcapsules Prepared by a Core-Mediated Layer-by-Layer Approach. <i>Chemistry of Materials</i> , 2004 , 16, 2107-2112	9.6	52
148	Layer-by-Layer Assembly of Nanoblended Thin Films: Poly(allylamine hydrochloride) and a Binary Mixture of a Synthetic and Natural Polyelectrolyte. <i>Macromolecules</i> , 2004 , 37, 6537-6543	5.5	54
147	Towards 3D metal-dielectric photonic crystal. Optical characterization. <i>Molecular Crystals and Liquid Crystals</i> , 2004 , 415, 211-219	0.5	3
146	Polyelectrolyte multilayer films of different charge density copolymers with synergistic nonelectrostatic interactions prepared by the layer-by-layer technique. <i>Langmuir</i> , 2004 , 20, 2730-8	4	35
145	Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers. <i>Chemistry of Materials</i> , 2004 , 16, 3066-3073	9.6	61
144	Influence of solvent quality on the growth of polyelectrolyte multilayers. <i>Langmuir</i> , 2004 , 20, 829-34	4	128
143	Enzyme encapsulation in nanoporous silica spheres. <i>Chemical Communications</i> , 2004 , 1528-9	5.8	167

(2003-2004)

Facile tailoring of film morphology and release properties using layer-by-layer assembly of thermoresponsive materials. <i>Langmuir</i> , 2004 , 20, 20-2	4	201
Plasmon emission in photoexcited gold nanoparticles. <i>Physical Review B</i> , 2004 , 70,	3.3	342
Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films. <i>Nano Letters</i> , 2003 , 3, 1203-1207	11.5	364
Copper-Assisted Weak Polyelectrolyte Multilayer Formation on Microspheres and Subsequent Film Crosslinking. <i>Advanced Functional Materials</i> , 2003 , 13, 929-937	15.6	130
Preparation and Organization of Nanoscale Polyelectrolyte-Coated Gold Nanoparticles. <i>Advanced Functional Materials</i> , 2003 , 13, 183-188	15.6	153
Conductive CoreBhell Particles: An Approach to Self-Assembled Mesoscopic Wires. <i>Advanced Materials</i> , 2003 , 15, 1113-1118	24	74
Nanotubes Prepared by Layer-by-Layer Coating of Porous Membrane Templates. <i>Advanced Materials</i> , 2003 , 15, 1849-1853	24	184
Lithium Niobate Inverse Opals Prepared by Templating Colloidal Crystals of Polyelectrolyte-Coated Spheres. <i>Advanced Materials</i> , 2003 , 15, 205-210	24	35
Coated Colloids with Tailored Optical Properties. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 10990-109	9 4 .4	108
Polymeric Multilayer Films Comprising Deconstructible Hydrogen-Bonded Stacks Confined between Electrostatically Assembled Layers. <i>Macromolecules</i> , 2003 , 36, 2845-2851	5.5	89
Self-Assembly and Characterization of Polyaniline and Sulfonated Polystyrene Multilayer-Coated Colloidal Particles and Hollow Shells. <i>Langmuir</i> , 2003 , 19, 8550-8554	4	167
Phase Transfer of Surface-Modified Gold Nanoparticles by Hydrophobization with Alkylamines. <i>Langmuir</i> , 2003 , 19, 6987-6993	4	117
Gold Nanoparticle-Based CoreBhell and Hollow Spheres and Ordered Assemblies Thereof. <i>Chemistry of Materials</i> , 2003 , 15, 3176-3183	9.6	219
Composite Photonic Crystals from Semiconductor Nanocrystal/Polyelectrolyte-Coated Colloidal Spheres. <i>Chemistry of Materials</i> , 2003 , 15, 2724-2729	9.6	85
Growth of Multilayer Films of Fixed and Variable Charge Density Polyelectrolytes: Effect of Mutual Charge and Secondary Interactions. <i>Macromolecules</i> , 2003 , 36, 5258-5264	5.5	115
Thin films of polyelectrolyte-encapsulated catalase microcrystals for biosensing. <i>Analytical Chemistry</i> , 2003 , 75, 3031-7	7.8	62
Surface-Modification of Polyelectrolyte Multilayer-Coated Particles for Biological Applications. <i>Langmuir</i> , 2003 , 19, 6219-6225	4	63
Hollow Inorganic Capsules via Colloid-Templated Layer-by-Layer Electrostatic Assembly. <i>Topics in Current Chemistry</i> , 2003 , 145-168		106
	Plasmon emission in photoexcited gold nanoparticles. <i>Physical Review B</i> , 2004, 70, Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films. <i>Nano Letters</i> , 2003, 3, 1203-1207 Copper-Assisted Weak Polyelectrolyte Multilayer Formation on Microspheres and Subsequent Film Crosslinking. <i>Advanced Functional Materials</i> , 2003, 13, 929-937 Preparation and Organization of Nanoscale Polyelectrolyte-Coated Gold Nanoparticles. <i>Advanced Functional Materials</i> , 2003, 13, 183-188 Conductive CoreBhell Particles: An Approach to Self-Assembled Mesoscopic Wires. <i>Advanced Materials</i> , 2003, 15, 1113-1118 Nanotubes Prepared by Layer-by-Layer Coating of Porous Membrane Templates. <i>Advanced Materials</i> , 2003, 15, 1849-1853 Lithium Niobate Inverse Opals Prepared by Templating Colloidal Crystals of Polyelectrolyte-Coated Spheres. <i>Advanced Materials</i> , 2003, 15, 2003, 15, 205-210 Coated Colloids with Tailored Optical Properties. <i>Journal of Physical Chemistry B</i> , 2003, 107, 10990-109 Polymeric Multilayer Films Comprising Deconstructible Hydrogen-Bonded Stacks Confined between Electrostatically Assembled Layers. <i>Macromolecules</i> , 2003, 36, 2845-2851 Self-Assembly and Characterization of Polyaniline and Sulfonated Polystyrene Multilayer-Coated Colloidal Particles and Hollow Shells. <i>Langmuir</i> , 2003, 19, 6987-6993 Gold Nanoparticle-Based CoreBhell and Hollow Spheres and Ordered Assemblies Thereof. <i>Chemistry of Materials</i> , 2003, 15, 3176-3183 Composite Photonic Crystals from Semiconductor Nanocrystal/Polyelectrolyte-Coated Colloidal Spheres. <i>Chemistry of Materials</i> , 2003, 15, 2724-2729 Growth of Multilayer Films of Fixed and Variable Charge Density Polyelectrolytes: Effect of Mutual Charge and Secondary Interactions. <i>Macromolecules</i> , 2003, 36, 5258-5264 Thin films of polyelectrolyte-encapsulated catalase microcrystals for biosensing. <i>Analytical Chemistry</i> , 2003, 75, 3031-7	Plasmon emission in photoexcited gold nanoparticles. Physical Review B, 2004, 70, 3-3 Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films. Nano Letters, 2003, 3, 1203-1207 Copper-Assisted Weak Polyelectrolyte Multilayer Formation on Microspheres and Subsequent Film 15-6 Crosslinking. Advanced Functional Materials, 2003, 13, 929-937 Preparation and Organization of Nanoscale Polyelectrolyte-Coated Gold Nanoparticles. Advanced Functional Materials, 2003, 13, 183-188 Conductive CoreBhell Particles: An Approach to Self-Assembled Mesoscopic Wires. Advanced Materials, 2003, 15, 1113-1118 Nanotubes Prepared by Layer-by-Layer Coating of Porous Membrane Templates. Advanced Materials, 2003, 15, 1849-1853 Lithium Niobate Inverse Opals Prepared by Templating Colloidal Crystals of Polyelectrolyte-Coated Spheres. Advanced Materials, 2003, 15, 205-210 Coated Colloids with Tailored Optical Properties. Journal of Physical Chemistry B, 2003, 107, 10990-10994,4 Polymeric Multilayer Films Comprising Deconstructible Hydrogen-Bonded Stacks Confined between Electrostatically Assembled Layers. Macromolecules, 2003, 36, 2845-2851 Self-Assembly and Characterization of Polyaniline and Sulfonated Polystyrene Multilayer-Coated Colloidal Particles and Hollow Shells. Langmuir, 2003, 19, 6987-6993 Gold Nanoparticle-Based CoreBhell and Hollow Spheres and Ordered Assemblies Thereof. Chemistry of Materials, 2003, 15, 2724-2729 Growth of Multilayer Films of Fixed and Variable Charge Density Polyelectrolyte-Coated Colloidal Spheres. Chemistry of Materials, 2003, 15, 2724-2729 Growth of Multilayer Films of Fixed and Variable Charge Density Polyelectrolytes: Effect of Mutual Charge and Secondary Interactions. Macromolecules, 2003, 36, 5258-5264 Thin films of polyelectrolyte-encapsulated catalase microcrystals for biosensing. Analytical Chemistry, 2003, 75, 3031-7 Surface-Modification of Polyelectrolyte Multilayer-Coated Particles for Biological Applications. Langmuir, 2003, 19, 6219-6225 Hollow Inorganic Caps

124	Self-assembly and magnetism in core-shell microspheres. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2003 , 21, 1515-1518	2.9	23
123	Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 240, 44-46	2.8	90
122	Semiconducting Polymer Inverse Opals Prepared by Electropolymerization. <i>Advanced Materials</i> , 2002 , 14, 34-38	24	106
121	Dense Nanoparticulate Thin Films via Gold Nanoparticle Self-Assembly. <i>Advanced Materials</i> , 2002 , 14, 508-512	24	138
120	Contiguous Silver Nanoparticle Coatings on Dielectric Spheres. Advanced Materials, 2002, 14, 732	24	105
119	GoldBilica Inverse Opals by Colloidal Crystal Templating. Advanced Materials, 2002, 14, 908	24	85
118	Metallodielectric Opals of Layer-by-Layer Processed Coated Colloids. <i>Advanced Materials</i> , 2002 , 14, 116	024	115
117	Inverse Opals for Optical Affinity Biosensing. <i>Advanced Materials</i> , 2002 , 14, 1629-1633	24	86
116	Biological and physical applications of water-based metal nanoparticles synthesised in organic solution. <i>ChemPhysChem</i> , 2002 , 3, 110-3	3.2	66
115	Conjugated Polymer Inverse Opals for Potentiometric Biosensing. Advanced Materials, 2002, 14, 1837-1	8न्ती	88
114	IIIVI semiconductor nanocrystals in thin films and colloidal crystals. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2002 , 202, 135-144	5.1	47
113	Multilayer thin films based on polyelectrolyte-complex nanoparticles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2002 , 207, 33-40	5.1	48
112	Effect of dendrimer on entrapment and release of bioactive from liposomes. <i>International Journal of Pharmaceutics</i> , 2002 , 232, 157-62	6.5	73
111	Nanoencapsulated microcrystalline particles for superamplified biochemical assays. <i>Analytical Chemistry</i> , 2002 , 74, 5480-6	7.8	98
110	Photonic Materials from Self-Assembly of Tolerant CoreBhell Coated Colloids. <i>Langmuir</i> , 2002 , 18, 4150-4154	4	28
109	Stepwise self-assembled poly(amidoamine) dendrimer and poly(styrenesulfonate) microcapsules as sustained delivery vehicles. <i>Biomacromolecules</i> , 2002 , 3, 1154-62	6.9	153
108	Electrostatic Interactions between Polyelectrolytes and a Titania Precursor: Thin Film and Solution Studies. <i>Langmuir</i> , 2002 , 18, 904-910	4	63
107	Electrostatically Assembled Polyelectrolyte/Dendrimer Multilayer Films as Ultrathin Nanoreservoirs. <i>Nano Letters</i> , 2002 , 2, 415-418	11.5	123

(2001-2002)

106	Oligosilsesquioxanes as versatile building blocks for the preparation of self-assembled thin films. Journal of the American Chemical Society, 2002 , 124, 8172-80	16.4	57
105	Investigation of the Factors Influencing the Formation of Dendrimer/Polyanion Multilayer Films. <i>Langmuir</i> , 2002 , 18, 7669-7676	4	73
104	Polyelectrolyte-Coated Colloid Spheres as Templates for Sol G el Reactions. <i>Chemistry of Materials</i> , 2002 , 14, 1909-1913	9.6	98
103	Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly. <i>Nano Letters</i> , 2002 , 2, 857-861	11.5	289
102	Electrostatically Assembled Fluorescent Thin Films of Rare-Earth-Doped Lanthanum Phosphate Nanoparticles. <i>Chemistry of Materials</i> , 2002 , 14, 4509-4516	9.6	192
101	Thin Multilayer Films of Weak Polyelectrolytes on Colloid Particles. <i>Macromolecules</i> , 2002 , 35, 9780-978	7 5.5	138
100	Investigation of the Influence of Polyelectrolyte Charge Density on the Growth of Multilayer Thin Films Prepared by the Layer-by-Layer Technique. <i>Macromolecules</i> , 2002 , 35, 889-897	5.5	221
99	Layer-by-Layer Construction of Novel Biofunctional Fluorescent Microparticles for Immunoassay Applications. <i>Journal of Colloid and Interface Science</i> , 2001 , 234, 356-362	9.3	96
98	CoreBhell Colloids and Hollow Polyelectrolyte Capsules Based on Diazoresins. <i>Advanced Functional Materials</i> , 2001 , 11, 122-128	15.6	131
97	Spontaner Phasentransfer metallischer Nanopartikel von der organischen in die w\u00e4srige Phase. Angewandte Chemie, 2001 , 113, 3089-3092	3.6	29
96	Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 3001-4	16.4	414
95	Nanoengineering of Particle Surfaces. <i>Advanced Materials</i> , 2001 , 13, 11-22	24	2275
94	Fabrication of Polyaniline Inverse Opals via Templating Ordered Colloidal Assemblies. <i>Advanced Materials</i> , 2001 , 13, 350-354	24	156
93	Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles. <i>Advanced Materials</i> , 2001 , 13, 740-744	24	363
92	Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates. <i>Advanced Materials</i> , 2001 , 13, 1090-1094	24	339
91	Release Behavior of Thin-Walled Microcapsules Composed of Polyelectrolyte Multilayers. <i>Langmuir</i> , 2001 , 17, 2036-2042	4	101
90	Nanoporous Thin Films Formed by Salt-Induced Structural Changes in Multilayers of Poly(acrylic acid) and Poly(allylamine). <i>Langmuir</i> , 2001 , 17, 3779-3783	4	226
89	Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. <i>Chemistry of Materials</i> , 2001 , 13, 109-116	9.6	543

88	Tailoring the Polyelectrolyte Coating of Metal Nanoparticles. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 6846-6852	3.4	277
87	Nanotubes Prepared by Templating Sacrificial Nickel Nanorods. <i>Nano Letters</i> , 2001 , 1, 727-730	11.5	147
86	Cross-Linked, Luminescent Spherical Colloidal and Hollow-Shell Particles. <i>Langmuir</i> , 2001 , 17, 7670-767	74 ₄	72
85	Biocolloids with ordered urease multilayer shells as enzymatic reactors. <i>Analytical Chemistry</i> , 2001 , 73, 4212-7	7.8	175
84	Decomposable hollow biopolymer-based capsules. <i>Biomacromolecules</i> , 2001 , 2, 921-6	6.9	205
83	Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal SpheresA Novel Route to Tune Pore Morphology. <i>Chemistry of Materials</i> , 2001 , 13, 364-371	9.6	161
82	Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. <i>Chemistry of Materials</i> , 2001 , 13, 400-409	9.6	481
81	Current Chemistry: Generation of Complex Colloids by Polyelectrolyte-Assisted Electrostatic Self-Assembly. <i>Australian Journal of Chemistry</i> , 2001 , 54, 349	1.2	16
80	Fabrication of heterogeneous macroporous materials based on a sequential electrostatic deposition process. <i>Chemical Communications</i> , 2001 , 489-490	5.8	17
79	High activity enzyme microcrystal multilayer films. <i>Journal of the American Chemical Society</i> , 2001 , 123, 8121-2	16.4	67
78	GoldIIItania CoreBhell Nanoparticles by Polyelectrolyte Complexation with a Titania Precursor. <i>Chemistry of Materials</i> , 2001 , 13, 3833-3836	9.6	134
77	Novel Fluorescent Labels Prepared by Layer-by-Layer Assembly on Colloids for Biodetection Systems. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 667, 1		
76	Hollow capsule processing through colloidal templating and self-assembly. <i>Chemistry - A European Journal</i> , 2000 , 6, 413-9	4.8	824
75	Nano- and Microengineering: 3-D Colloidal Photonic Crystals Prepared from Sub-th-sized Polystyrene Latex Spheres Pre-Coated with Luminescent Polyelectrolyte/Nanocrystal Shells. <i>Advanced Materials</i> , 2000 , 12, 333-337	24	268
74	Preparation of enzyme multilayers on colloids for biocatalysis. <i>Macromolecular Rapid Communications</i> , 2000 , 21, 750-753	4.8	109
73	Multilayered Polymer Nanocapsules Derived from Gold Nanoparticle Templates. <i>Advanced Materials</i> , 2000 , 12, 1947-1949	24	183
7 ²	Assembly of Bulcosidase multilayers on spherical colloidal particles and their use as active catalysts. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 169, 287-293	5.1	65
71	Formation of luminescent spherical core-shell particles by the consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 163, 39-44	5.1	106

(1998-2000)

70	Adsorption and Desorption Behavior of an Anionic Pyrene Chromophore in Sequentially Deposited Polyelectrolyte-Dye Thin Films. <i>Journal of the American Chemical Society</i> , 2000 , 122, 5841-5848	16.4	145
69	Microencapsulation of Uncharged Low Molecular Weight Organic Materials by Polyelectrolyte Multilayer Self-Assembly <i>Langmuir</i> , 2000 , 16, 8932-8936	4	159
68	Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using CoreBhell Building Blocks. <i>Chemistry of Materials</i> , 2000 , 12, 2832-2834	9.6	272
67	Enzyme Multilayers on Colloid Particles: Assembly, Stability, and Enzymatic Activity. <i>Langmuir</i> , 2000 , 16, 9595-9603	4	323
66	Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules. <i>Langmuir</i> , 2000 , 16, 1485-1488	4	481
65	Hollow Capsule Processing through Colloidal Templating and Self-Assembly 2000 , 6, 413		3
64	From polymeric films to nanoreactors. <i>Macromolecular Symposia</i> , 1999 , 145, 75-81	0.8	16
63	A quartz crystal microbalance study of the removal of solid organic soils from a hard surface in aqueous surfactant solution. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 146, 185-197	5.1	12
62	Photoelectrochemical behaviour of CdS Q -state l semiconductor particles in 10,12-nonacosadiynoic acid polymer langmuir-blodgett films. <i>Journal of Materials Science</i> , 1999 , 34, 52	.85 ^{4.3} 29	1 ²⁴
61	Magnetic CoreBhell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres. <i>Advanced Materials</i> , 1999 , 11, 950-953	24	306
60	Protein Multilayer Formation on Colloids through a Stepwise Self-Assembly Technique. <i>Journal of the American Chemical Society</i> , 1999 , 121, 6039-6046	16.4	387
59	Giant self-contained metallosupramolecular entities. <i>Chemical Communications</i> , 1999 , 1579-1580	5.8	34
58	Production of Hollow Microspheres from Nanostructured Composite Particles. <i>Chemistry of Materials</i> , 1999 , 11, 3309-3314	9.6	264
57	Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids. <i>Langmuir</i> , 1999 , 15, 8276-8281	4	192
56	CoreBhell Particles and Hollow Shells Containing Metallo-Supramolecular Components. <i>Chemistry of Materials</i> , 1999 , 11, 3394-3399	9.6	115
55	Investigation of Electrostatic Interactions in Polyelectrolyte Multilayer Films: Binding of Anionic Fluorescent Probes to Layers Assembled onto Colloids. <i>Macromolecules</i> , 1999 , 32, 2317-2328	5.5	358
54	Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. <i>Science</i> , 1998 , 282, 1111-4	33.3	3665
53	Influence of Polyelectrolyte Multilayer Coatings on FEster Resonance Energy Transfer between 6-Carboxyfluorescein and Rhodamine B-Labeled Particles in Aqueous Solution. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 2011-2016	3.4	180

52	Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. <i>Polymers for Advanced Technologies</i> , 1998 , 9, 759-767	3.2	573
51	Neuartige Polymerhohlkfiper durch Selbstorganisation von Polyelektrolyten auf kolloidalen Templaten. <i>Angewandte Chemie</i> , 1998 , 110, 2323-2327	3.6	158
50	Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 2201-2205	16.4	1612
49	In-situ measurement of DNA immobilization and hybridization using a 27 MHz quartz crystal microbalance. <i>Colloids and Surfaces B: Biointerfaces</i> , 1998 , 10, 199-204	6	50
48	Ultrathin Molybdenum Polyoxometalate B olyelectrolyte Multilayer Films. <i>Langmuir</i> , 1998 , 14, 3462-346	554	141
47	Fluorescence Studies of the Binding of Anionic Derivatives of Pyrene and Fluorescein to Cationic Polyelectrolytes in Aqueous Solution. <i>Macromolecules</i> , 1998 , 31, 7365-7377	5.5	42
46	Real Time Monitoring of the Detergency Process by Using a Quartz Crystal Microbalance Langmuir, 1998 , 14, 575-577	4	37
45	Electrostatic Self-Assembly of Silica Nanoparticle P olyelectrolyte Multilayers on Polystyrene Latex Particles. <i>Journal of the American Chemical Society</i> , 1998 , 120, 8523-8524	16.4	462
44	Characterization of Polyelectrolyte P rotein Multilayer Films by Atomic Force Microscopy, Scanning Electron Microscopy, and Fourier Transform Infrared Reflection Absorption Spectroscopy. <i>Langmuir</i> , 1998 , 14, 4559-4565	4	279
43	Acousto-optic surface-plasmon resonance measurements of thin films on gold. <i>Journal of Applied Physics</i> , 1998 , 83, 1023-1028	2.5	10
42	Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes 1998 , 37, 2201		3
41	Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes 1998 , 37, 2201		33
40	1. Ultrathin Multilayer Polyelectrolyte Films on Gold:□Construction and Thickness Determination. <i>Langmuir</i> , 1997 , 13, 3422-3426	4	247
39	2. Assembly of Alternating Polyelectrolyte and Protein Multilayer Films for Immunosensing. <i>Langmuir</i> , 1997 , 13, 3427-3433	4	359
38	Biosensors: recent advances. <i>Reports on Progress in Physics</i> , 1997 , 60, 1397-1445	14.4	197
37	DNA binding and hybridization on gold and derivatized surfaces. <i>Sensors and Actuators B: Chemical</i> , 1997 , 41, 189-197	8.5	45
36	Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic Acid sensor development. <i>Analytical Chemistry</i> , 1997 , 69, 2043-9	7.8	372
35	Characterization of Ferritin Adsorption onto Gold. <i>Journal of Colloid and Interface Science</i> , 1997 , 186, 129-40	9.3	162

34	Gravimetric Monitoring of Nonionic Surfactant Adsorption from Nonaqueous Media onto Quartz Crystal Microbalance Electrodes and Colloidal Silica. <i>Langmuir</i> , 1996 , 12, 2145-2152	4	30
33	Orientational Aspects of Antibody Immobilization and Immunological Activity on Quartz Crystal Microbalance Electrodes. <i>Journal of Colloid and Interface Science</i> , 1996 , 178, 104-115	9.3	129
32	Investigation of immuno-reactions in a flow-injection system using surface plasmon resonance. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1995 , 103, 147-157	5.1	11
31	Quartz Crystal Microbalance and Surface Plasmon Resonance Study of Surfactant Adsorption onto Gold and Chromium Oxide Surfaces. <i>Langmuir</i> , 1995 , 11, 1546-1552	4	111
30	Surface chemical activation of quartz crystal microbalance gold electrodes halysis by frequency changes, contact angle measurements and grazing angle FTIR. <i>Thin Solid Films</i> , 1995 , 260, 192-199	2.2	53
29	Immobilisation of IgG onto gold surfaces and its interaction with anti-IgG studied by surface plasmon resonance. <i>Journal of Immunological Methods</i> , 1994 , 175, 149-60	2.5	47
28	Lateral diffusion study of amphiphiles in air-water monolayer films of polymerizable surfactants. <i>Macromolecules</i> , 1994 , 27, 77-86	5.5	6
27	Lateral diffusion of lipoidal spectroscopic probes in Langmuir-Blodgett films at the solid/liquid interface. <i>Langmuir</i> , 1994 , 10, 3373-3376	4	6
26	Lateral diffusion of amphiphiles in fatty acid monolayers at the air-water interface: a steady-state and time-resolved fluorescence quenching study. <i>Langmuir</i> , 1993 , 9, 3142-3148	4	8
25	Two-dimensional diffusion of amphiphiles in phospholipid monolayers at the air-water interface. <i>Biophysical Journal</i> , 1993 , 65, 2493-503	2.9	15
24	Behavior of a pyrene-labeled phospholipid in monolayers of dimyristoyl-Lalphaphosphatidylcholine at the gas-water interface: a fluorescence quenching study. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 7364-7370		8
23	Determination of lateral diffusion coefficients in air-water monolayers by fluorescence quenching measurements. <i>Journal of the American Chemical Society</i> , 1991 , 113, 4838-4843	16.4	39
22	Bioinspired Porous Hybrid Materials via Layer-by-Layer Assembly209-238		1
21	Latex Particles1-51		3
20	Semiconductor Nanoparticles52-95		3
19	Monolayer Protected Clusters of Gold and Silver96-119		2
18	Colloidal Nanoreactors and Nanocontainers150-174		1
17	Sonochemical Synthesis of Inorganic and Organic Colloids120-149		2

Metal and Semiconductor Nanoparticle Modification via Chemical Reactions216-245

15	Nanoscale Particle Modification via Sequential Electrostatic Assembly246-283	2
14	Miniemulsions for the Convenient Synthesis of Organic and Inorganic Nanoparticles and Bingle Molecule Applications in Materials Chemistry 175-215	
13	Colloidal Crystals: Recent Developments and Niche Applications284-316	2
12	Surface-Directed Colloid Patterning: Selective Deposition via Electrostatic and Secondary Interactions317-341 2	2
11	Evolving Strategies of Nanomaterials Design342-368	
10	Nanoparticle Organization at the Air-Water Interface and in Langmuir-Blodgett Films369-397	Ĺ
9	Layer-By-Layer Self-Assembly of Metal Nanoparticles on Planar Substrates: Fabrication and Properties398-436	
8	Assembly of Electrically Functional Microstructures from Colloidal Particles437-464	5
7	3D Ordered Macroporous Materials465-493	11
6	Semiconductor Quantum Dots as Multicolor and Ultrasensitive Biological Labels494-506	
5	Colloids for Encoding Chemical Libraries: Applications in Biological Screening507-560	Ĺ
4	Polyelectrolyte Microcapsules as Biomimetic Models561-580	<u> </u>
3	Immobilization and Intracellular Delivery of Structurally Nanoengineered Antimicrobial Peptide Polymers Using Polyphenol-Based Capsules. <i>Advanced Functional Materials</i> ,2107341	1
2	Assembly of MetalPhenolic Networks on Water-Soluble Substrates in Nonaqueous Media. Advanced Functional Materials, 2111942	<u> </u>
1	Laser Scanning Confocal Microscopic Analysis of Metakaolin-Based Geopolymers273-282	Ĺ