Frank Caruso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2489310/publications.pdf

Version: 2024-02-01

618 papers 69,286 citations

133 h-index 227 g-index

677 all docs

677 docs citations

677 times ranked

44263 citing authors

#	Article	IF	CITATIONS
1	Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. , 1998, 282, 1111-1114.		3,921
2	Nanoengineering of Particle Surfaces. Advanced Materials, 2001, 13, 11-22.	11.1	2,440
3	Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angewandte Chemie - International Edition, 1998, 37, 2201-2205.	7. 2	1,735
4	One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science, 2013, 341, 154-157.	6.0	1,683
5	Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348, aaa2491.	6.0	1,272
6	Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chemistry - A European Journal, 2000, 6, 413-419.	1.7	880
7	Engineering Multifunctional Capsules through the Assembly of Metal–Phenolic Networks. Angewandte Chemie - International Edition, 2014, 53, 5546-5551.	7.2	781
8	Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly. Chemistry of Materials, 2008, 20, 848-858.	3.2	733
9	Innovation in Layer-by-Layer Assembly. Chemical Reviews, 2016, 116, 14828-14867.	23.0	678
10	Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polymers for Advanced Technologies, 1998, 9, 759-767.	1.6	615
11	Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chemistry of Materials, 2001, 13, 109-116.	3.2	579
12	Layer-by-layer engineered capsules and their applications. Current Opinion in Colloid and Interface Science, 2006, 11, 203-209.	3.4	553
13	Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotechnology, 2011, 6, 358-363.	15.6	552
14	Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chemistry of Materials, 2001, 13, 400-409.	3.2	529
15	Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules. Langmuir, 2000, 16, 1485-1488.	1.6	516
16	Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation. Chemistry of Materials, 2005, 17, 953-961.	3.2	509
17	Electrostatic Self-Assembly of Silica Nanoparticleâ^'Polyelectrolyte Multilayers on Polystyrene Latex Particles. Journal of the American Chemical Society, 1998, 120, 8523-8524.	6.6	488
18	A Decade of the Protein Corona. ACS Nano, 2017, 11, 11773-11776.	7.3	477

#	Article	IF	CITATIONS
19	Spontaneous Phase Transfer of Nanoparticulate Metals from Organic to Aqueous Media. Angewandte Chemie - International Edition, 2001, 40, 3001-3004.	7.2	455
20	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	15.6	455
21	Self-Polymerization of Dopamine as a Versatile and Robust Technique to Prepare Polymer Capsules. Chemistry of Materials, 2009, 21, 3042-3044.	3.2	454
22	Next generation, sequentially assembled ultrathin films: beyond electrostatics. Chemical Society Reviews, 2007, 36, 707.	18.7	425
23	Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Development. Analytical Chemistry, 1997, 69, 2043-2049.	3.2	418
24	Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Advanced Materials, 2018, 30, e1801362.	11.1	415
25	Protein Multilayer Formation on Colloids through a Stepwise Self-Assembly Technique. Journal of the American Chemical Society, 1999, 121, 6039-6046.	6.6	411
26	Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today, 2017, 12, 136-148.	6.2	411
27	Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films. Nano Letters, 2003, 3, 1203-1207.	4.5	398
28	Plasmon emission in photoexcited gold nanoparticles. Physical Review B, 2004, 70, .	1.1	394
29	Optically Addressable Nanostructured Capsules. Advanced Materials, 2004, 16, 2184-2189.	11.1	391
30	Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles. Advanced Materials, 2001, 13, 740-744.	11.1	385
31	Light-Responsive Polyelectrolyte/Gold Nanoparticle Microcapsules. Journal of Physical Chemistry B, 2005, 109, 3071-3076.	1.2	385
32	2. Assembly of Alternating Polyelectrolyte and Protein Multilayer Films for Immunosensing. Langmuir, 1997, 13, 3427-3433.	1.6	382
33	Investigation of Electrostatic Interactions in Polyelectrolyte Multilayer Films:Â Binding of Anionic Fluorescent Probes to Layers Assembled onto Colloids. Macromolecules, 1999, 32, 2317-2328.	2.2	379
34	Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates. Advanced Materials, 2001, 13, 1090-1094.	11.1	366
35	Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry. Journal of the American Chemical Society, 2006, 128, 9318-9319.	6.6	356
36	Enzyme Multilayers on Colloid Particles:Â Assembly, Stability, and Enzymatic Activity. Langmuir, 2000, 16, 9595-9603.	1.6	351

#	Article	IF	CITATIONS
37	Modular assembly of superstructures from polyphenol-functionalized building blocks. Nature Nanotechnology, 2016, 11, 1105-1111.	15.6	337
38	Magnetic Core-Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres. Advanced Materials, 1999, 11, 950-953.	11.1	328
39	Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chemical Society Reviews, 2011, 40, 19-29.	18.7	327
40	Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles. Angewandte Chemie - International Edition, 2004, 43, 5954-5957.	7.2	320
41	Disulfide Cross-Linked Polymer Capsules:Â En Route to Biodeconstructible Systems. Biomacromolecules, 2006, 7, 27-30.	2.6	316
42	Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly. Nano Letters, 2002, 2, 857-861.	4.5	310
43	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	7.3	304
44	Coordination-Driven Multistep Assembly of Metal–Polyphenol Films and Capsules. Chemistry of Materials, 2014, 26, 1645-1653.	3.2	303
45	Void Engineering in Metal–Organic Frameworks via Synergistic Etching and Surface Functionalization. Advanced Functional Materials, 2016, 26, 5827-5834.	7.8	302
46	Phenolic Building Blocks for the Assembly of Functional Materials. Angewandte Chemie - International Edition, 2019, 58, 1904-1927.	7.2	302
47	Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Coreâ^'Shell Building Blocks. Chemistry of Materials, 2000, 12, 2832-2834.	3.2	301
48	Tailoring the Polyelectrolyte Coating of Metal Nanoparticles. Journal of Physical Chemistry B, 2001, 105, 6846-6852.	1.2	300
49	Characterization of Polyelectrolyteâ 'Protein Multilayer Films by Atomic Force Microscopy, Scanning Electron Microscopy, and Fourier Transform Infrared Reflectionâ 'Absorption Spectroscopy. Langmuir, 1998, 14, 4559-4565.	1.6	299
50	Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules. Biomacromolecules, 2012, 13, 2225-2228.	2.6	298
51	Production of Hollow Microspheres from Nanostructured Composite Particles. Chemistry of Materials, 1999, 11, 3309-3314.	3.2	291
52	Coatings super-repellent to ultralow surface tension liquids. Nature Materials, 2018, 17, 1040-1047.	13.3	289
53	Nano- and Microengineering: 3-D Colloidal Photonic Crystals Prepared from Sub-νm-sized Polystyrene Latex Spheres Pre-Coated with Luminescent Polyelectrolyte/Nanocrystal Shells. Advanced Materials, 2000, 12, 333-337.	11.1	288
54	Layerâ€Byâ€Layerâ€Assembled Capsules and Films for Therapeutic Delivery. Small, 2010, 6, 1836-52.	5.2	280

#	Article	IF	CITATIONS
55	Monodisperse Polymer Capsules: Tailoring Size, Shell Thickness, and Hydrophobic Cargo Loading via Emulsion Templating. Advanced Functional Materials, 2010, 20, 1625-1631.	7.8	272
56	1. Ultrathin Multilayer Polyelectrolyte Films on Gold:Â Construction and Thickness Determination. Langmuir, 1997, 13, 3422-3426.	1.6	270
57	Differential Roles of the Protein Corona in the Cellular Uptake of Nanoporous Polymer Particles by Monocyte and Macrophage Cell Lines. ACS Nano, 2013, 7, 10960-10970.	7.3	259
58	Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials, 2016, 28, 7910-7914.	11.1	254
59	Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nature Nanotechnology, 2007, 2, 790-795.	15.6	251
60	Liquid Crystal Emulsions as the Basis of Biological Sensors for the Optical Detection of Bacteria and Viruses. Advanced Functional Materials, 2009, 19, 2260-2265.	7.8	245
61	Polyphenol-Mediated Assembly for Particle Engineering. Accounts of Chemical Research, 2020, 53, 1269-1278.	7.6	244
62	Nanoporous Thin Films Formed by Salt-Induced Structural Changes in Multilayers of Poly(acrylic) Tj ETQq0 0 0 rg	BT ₁ Overlo	ock 10 Tf 50 4
63	Templated Synthesis of Single-Component Polymer Capsules and Their Application in Drug Delivery. Nano Letters, 2008, 8, 1741-1745.	4.5	242
64	Investigation of the Influence of Polyelectrolyte Charge Density on the Growth of Multilayer Thin Films Prepared by the Layer-by-Layer Technique. Macromolecules, 2002, 35, 889-897.	2.2	240
65	Gold Nanoparticle-Based Coreâ^'Shell and Hollow Spheres and Ordered Assemblies Thereof. Chemistry of Materials, 2003, 15, 3176-3183.	3.2	238
66	Mesoporous Silica Particles as Templates for Preparing Enzyme-Loaded Biocompatible Microcapsules. Advanced Materials, 2005, 17, 1737-1741.	11.1	225
67	Biosensors: recent advances. Reports on Progress in Physics, 1997, 60, 1397-1445.	8.1	224
68	Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties. Journal of the American Chemical Society, 2006, 128, 9935-9942.	6.6	219
69	pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery. Small, 2015, 11, 2032-2036.	5.2	216
70	Decomposable Hollow Biopolymer-Based Capsules. Biomacromolecules, 2001, 2, 921-926.	2.6	215
71	Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano, 2018, 12, 13-23.	7.3	214
72	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	7.3	211

#	Article	IF	CITATIONS
73	Facile Tailoring of Film Morphology and Release Properties Using Layer-by-Layer Assembly of Thermoresponsive Materials. Langmuir, 2004, 20, 20-22.	1.6	209
74	A Microreactor with Thousands of Subcompartments: Enzymeâ€Loaded Liposomes within Polymer Capsules. Angewandte Chemie - International Edition, 2009, 48, 4359-4362.	7.2	204
75	DNA Multilayer Films on Planar and Colloidal Supports:Â Sequential Assembly of Like-Charged Polyelectrolytes. Nano Letters, 2005, 5, 953-956.	4.5	202
76	Degradable Polyelectrolyte Capsules Filled with Oligonucleotide Sequences. Angewandte Chemie - International Edition, 2006, 45, 7743-7745.	7.2	202
77	Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids. Langmuir, 1999, 15, 8276-8281.	1.6	200
78	Electrostatically Assembled Fluorescent Thin Films of Rare-Earth-Doped Lanthanum Phosphate Nanoparticles. Chemistry of Materials, 2002, 14, 4509-4516.	3.2	199
79	Influence of Polyelectrolyte Multilayer Coatings on Förster Resonance Energy Transfer between 6-Carboxyfluorescein and Rhodamine B-Labeled Particles in Aqueous Solution. Journal of Physical Chemistry B, 1998, 102, 2011-2016.	1.2	198
80	A General Approach for DNA Encapsulation in Degradable Polymer Microcapsules. ACS Nano, 2007, 1, 63-69.	7.3	195
81	Nanotubes Prepared by Layer-by-Layer Coating of Porous Membrane Templates. Advanced Materials, 2003, 15, 1849-1853.	11.1	194
82	Biocolloids with Ordered Urease Multilayer Shells as Enzymatic Reactors. Analytical Chemistry, 2001, 73, 4212-4217.	3.2	193
83	Multilayered Polymer Nanocapsules Derived from Gold Nanoparticle Templates. Advanced Materials, 2000, 12, 1947-1949.	11.1	191
84	Ultrathin, Responsive Polymer Click Capsules. Nano Letters, 2007, 7, 1706-1710.	4.5	191
85	Nanoporous Polyelectrolyte Spheres Prepared by Sequentially Coating Sacrificial Mesoporous Silica Spheres. Angewandte Chemie - International Edition, 2005, 44, 2888-2892.	7.2	190
86	Disulfide-Stabilized Poly(methacrylic acid) Capsules: Formation, Cross-Linking, and Degradation Behavior. Chemistry of Materials, 2008, 20, 2655-2661.	3.2	187
87	Enzyme encapsulation in nanoporous silica spheresElectronic supplementary information (ESI) available: experimental details, and details of particle characterization. See http://www.rsc.org/suppdata/cc/b4/b403871a/. Chemical Communications, 2004, , 1528.	2.2	184
88	The "Sweet―Side of the Protein Corona: Effects of Glycosylation on Nanoparticle–Cell Interactions. ACS Nano, 2015, 9, 2157-2166.	7.3	184
89	Biodegradable Click Capsules with Engineered Drug-Loaded Multilayers. ACS Nano, 2010, 4, 1653-1663.	7.3	181
90	Encapsulation of Waterâ€Insoluble Drugs in Polymer Capsules Prepared Using Mesoporous Silica Templates for Intracellular Drug Delivery. Advanced Materials, 2010, 22, 4293-4297.	11.1	180

#	Article	IF	CITATIONS
91	Assembly of Layer-by-Layer Particles and Their Interactions with Biological Systems. Chemistry of Materials, 2014, 26, 452-460.	3.2	177
92	Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligands. Chemistry of Materials, 2015, 27, 5825-5832.	3.2	177
93	Microencapsulation of Uncharged Low Molecular Weight Organic Materials by Polyelectrolyte Multilayer Self-Assemblyâ€. Langmuir, 2000, 16, 8932-8936.	1.6	175
94	Fabrication of Polyaniline Inverse Opals via Templating Ordered Colloidal Assemblies. Advanced Materials, 2001, 13, 350-354.	11.1	175
95	Self-Assembly and Characterization of Polyaniline and Sulfonated Polystyrene Multilayer-Coated Colloidal Particles and Hollow Shells. Langmuir, 2003, 19, 8550-8554.	1.6	175
96	Interfacing Materials Science and Biology for Drug Carrier Design. Advanced Materials, 2015, 27, 2278-2297.	11.1	175
97	Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal SpheresA Novel Route to Tune Pore Morphology. Chemistry of Materials, 2001, 13, 364-371.	3.2	174
98	Stepwise Self-Assembled Poly(amidoamine) Dendrimer and Poly(styrenesulfonate) Microcapsules as Sustained Delivery Vehicles. Biomacromolecules, 2002, 3, 1154-1162.	2.6	174
99	Targeting and Uptake of Multilayered Particles to Colorectal Cancer Cells. Advanced Materials, 2006, 18, 1998-2003.	11.1	174
100	Preparation and Organization of Nanoscale Polyelectrolyte-Coated Gold Nanoparticles. Advanced Functional Materials, 2003, 13, 183-188.	7.8	173
101	Degradable, Surfactantâ€Free, Monodisperse Polymerâ€Encapsulated Emulsions as Anticancer Drug Carriers. Advanced Materials, 2009, 21, 1820-1824.	11.1	173
102	Emerging methods for the fabrication of polymer capsules. Advances in Colloid and Interface Science, 2014, 207, 14-31.	7.0	172
103	Polymer hydrogel capsules: en route toward synthetic cellular systems. Nanoscale, 2009, 1, 68.	2.8	171
104	Characterization of Ferritin Adsorption onto Gold. Journal of Colloid and Interface Science, 1997, 186, 129-140.	5.0	170
105	A Protective Vaccine Delivery System for <i>In Vivo</i> T Cell Stimulation Using Nanoengineered Polymer Hydrogel Capsules. ACS Nano, 2009, 3, 3391-3400.	7.3	170
106	A Cytoprotective and Degradable Metal–Polyphenol Nanoshell for Singleâ€Cell Encapsulation. Angewandte Chemie - International Edition, 2014, 53, 12420-12425.	7.2	164
107	Ultrathin Molybdenum Polyoxometalateâ^'Polyelectrolyte Multilayer Films. Langmuir, 1998, 14, 3462-3465.	1.6	162
108	Nanotubes Prepared by Templating Sacrificial Nickel Nanorods. Nano Letters, 2001, 1, 727-730.	4. 5	161

#	Article	IF	CITATIONS
109	Biomimetic Liposome- and Polymersome-Based Multicompartmentalized Assemblies. Langmuir, 2012, 28, 13798-13807.	1.6	160
110	Engineering Particles for Therapeutic Delivery: Prospects and Challenges. ACS Nano, 2012, 6, 3663-3669.	7.3	160
111	Super-resolution Imaging of Proton Sponge-Triggered Rupture of Endosomes and Cytosolic Release of Small Interfering RNA. ACS Nano, 2019, 13, 187-202.	7.3	159
112	Targeting of Cancer Cells Using Click-Functionalized Polymer Capsules. Journal of the American Chemical Society, 2010, 132, 15881-15883.	6.6	157
113	Tailoring the Interfaces between Nematic Liquid Crystal Emulsions and Aqueous Phases via Layer-by-Layer Assembly. Nano Letters, 2006, 6, 2243-2248.	4.5	155
114	Binding, Internalization, and Antigen Presentation of Vaccine‣oaded Nanoengineered Capsules in Blood. Advanced Materials, 2008, 20, 4698-4703.	11.1	155
115	Uptake and Intracellular Fate of Disulfide-Bonded Polymer Hydrogel Capsules for Doxorubicin Delivery to Colorectal Cancer Cells. ACS Nano, 2010, 4, 2928-2936.	7.3	155
116	Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS Nano, 2017, 11, 54-68.	7.3	153
117	An Enzymeâ€Coated Metal–Organic Framework Shell for Synthetically Adaptive Cell Survival. Angewandte Chemie - International Edition, 2017, 56, 8510-8515.	7.2	152
118	Adsorption and Desorption Behavior of an Anionic Pyrene Chromophore in Sequentially Deposited Polyelectrolyte-Dye Thin Films. Journal of the American Chemical Society, 2000, 122, 5841-5848.	6.6	150
119	Influence of Size, Surface, Cell Line, and Kinetic Properties on the Specific Binding of A33 Antigen-Targeted Multilayered Particles and Capsules to Colorectal Cancer Cells. ACS Nano, 2007, 1, 93-102.	7.3	150
120	Thin Multilayer Films of Weak Polyelectrolytes on Colloid Particles. Macromolecules, 2002, 35, 9780-9787.	2.2	149
121	Engineering Poly(ethylene glycol) Particles for Improved Biodistribution. ACS Nano, 2015, 9, 1571-1580.	7.3	148
122	Dense Nanoparticulate Thin Films via Gold Nanoparticle Self-Assembly. Advanced Materials, 2002, 14, 508-512.	11.1	147
123	Ultrasonic Synthesis of Stable, Functional Lysozyme Microbubbles. Langmuir, 2008, 24, 10078-10083.	1.6	147
124	Metal–Phenolic Supramolecular Gelation. Angewandte Chemie - International Edition, 2016, 55, 13803-13807.	7.2	147
125	Core-Shell Colloids and Hollow Polyelectrolyte Capsules Based on Diazoresins. Advanced Functional Materials, 2001, 11, 122-128.	7.8	145
126	Goldâ^'Titania Coreâ^'Shell Nanoparticles by Polyelectrolyte Complexation with a Titania Precursor. Chemistry of Materials, 2001, 13, 3833-3836.	3.2	142

#	Article	IF	Citations
127	Engineering Advanced Capsosomes: Maximizing the Number of Subcompartments, Cargo Retention, and Temperature-Triggered Reaction. ACS Nano, 2010, 4, 1351-1361.	7.3	139
128	Shape-Dependent Cellular Processing of Polyelectrolyte Capsules. ACS Nano, 2013, 7, 522-530.	7.3	138
129	Polyphenolâ€Mediated Assembly of Proteins for Engineering Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 15618-15625.	7.2	138
130	Copper-Assisted Weak Polyelectrolyte Multilayer Formation on Microspheres and Subsequent Film Crosslinking. Advanced Functional Materials, 2003, 13, 929-937.	7.8	137
131	Bioinspired colloidal systems vialayer-by-layer assembly. Soft Matter, 2006, 2, 18-23.	1.2	137
132	Sizeâ€Dependent Ordering of Liquid Crystals Observed in Polymeric Capsules with Micrometer and Smaller Diameters. Angewandte Chemie - International Edition, 2009, 48, 1652-1655.	7.2	137
133	Nanoporous colloids: building blocks for a new generation of structured materials. Journal of Materials Chemistry, 2009, 19, 6451.	6.7	137
134	Influence of Solvent Quality on the Growth of Polyelectrolyte Multilayers. Langmuir, 2004, 20, 829-834.	1.6	136
135	Orientational Aspects of Antibody Immobilization and Immunological Activity on Quartz Crystal Microbalance Electrodes. Journal of Colloid and Interface Science, 1996, 178, 104-115.	5.0	135
136	Electrostatically Assembled Polyelectrolyte/Dendrimer Multilayer Films as Ultrathin Nanoreservoirs. Nano Letters, 2002, 2, 415-418.	4.5	133
137	Engineering Polymer Hydrogel Nanoparticles for Lymph Nodeâ€√argeted Delivery. Angewandte Chemie - International Edition, 2016, 55, 1334-1339.	7.2	133
138	Size and Rigidity of Cylindrical Polymer Brushes Dictate Long Circulating Properties <i>In Vivo</i> ACS Nano, 2015, 9, 1294-1304.	7.3	132
139	Chlorine Resistant Glutaraldehyde Crosslinked Polyelectrolyte Multilayer Membranes for Desalination. Advanced Materials, 2015, 27, 2791-2796.	11.1	128
140	Metal–Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles. ACS Nano, 2019, 13, 11653-11664.	7.3	128
141	Coreâ^Shell Particles and Hollow Shells Containing Metallo-Supramolecular Components. Chemistry of Materials, 1999, 11, 3394-3399.	3.2	127
142	Formation of luminescent spherical core-shell particles by the consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 163, 39-44.	2.3	127
143	Capsosomes: Subcompartmentalizing Polyelectrolyte Capsules Using Liposomes. Langmuir, 2009, 25, 6725-6732.	1.6	127
144	Metallodielectric Opals of Layer-by-Layer Processed Coated Colloids. Advanced Materials, 2002, 14, 1160.	11.1	126

#	Article	IF	Citations
145	A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules. Biomaterials, 2009, 30, 5178-5186.	5 . 7	126
146	Growth of Multilayer Films of Fixed and Variable Charge Density Polyelectrolytes:Â Effect of Mutual Charge and Secondary Interactions. Macromolecules, 2003, 36, 5258-5264.	2.2	124
147	Templated Assembly of pHâ€Labile Polymerâ€Drug Particles for Intracellular Drug Delivery. Advanced Functional Materials, 2012, 22, 4718-4723.	7.8	124
148	pH-Responsive Poly(acrylic acid) Core Cross-Linked Star Polymers: Morphology Transitions in Solution and Multilayer Thin Films. Macromolecules, 2008, 41, 2620-2626.	2.2	122
149	Nanoengineered Templated Polymer Particles: Navigating the Biological Realm. Accounts of Chemical Research, 2016, 49, 1139-1148.	7.6	122
150	Coated Colloids with Tailored Optical Properties. Journal of Physical Chemistry B, 2003, 107, 10990-10994.	1.2	121
151	Phase Transfer of Surface-Modified Gold Nanoparticles by Hydrophobization with Alkylamines. Langmuir, 2003, 19, 6987-6993.	1.6	121
152	Engineering Low-Fouling and pH-Degradable Capsules through the Assembly of Metal-Phenolic Networks. Biomacromolecules, 2015, 16, 807-814.	2.6	121
153	Quartz Crystal Microbalance and Surface Plasmon Resonance Study of Surfactant Adsorption onto Gold and Chromium Oxide Surfaces. Langmuir, 1995, 11, 1546-1552.	1.6	120
154	Active multilayered capsules for in vivo bone formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3406-3411.	3.3	119
155	Dopamine-Mediated Continuous Assembly of Biodegradable Capsules. Chemistry of Materials, 2011, 23, 3141-3143.	3.2	119
156	Semiconducting Polymer Inverse Opals Prepared by Electropolymerization. Advanced Materials, 2002, 14, 34-38.	11.1	118
157	Low-Fouling, Biofunctionalized, and Biodegradable Click Capsules. Biomacromolecules, 2008, 9, 3389-3396.	2.6	118
158	Hollow Inorganic Capsules via Colloid-Templated Layer-by-Layer Electrostatic Assembly. Topics in Current Chemistry, 2003, , 145-168.	4.0	117
159	Preparation of enzyme multilayers on colloids for biocatalysis. Macromolecular Rapid Communications, 2000, 21, 750-753.	2.0	115
160	Release Behavior of Thin-Walled Microcapsules Composed of Polyelectrolyte Multilayers. Langmuir, 2001, 17, 2036-2042.	1.6	115
161	Macroporous Zeolitic Membrane Bioreactors. Advanced Functional Materials, 2004, 14, 1012-1018.	7.8	115
162	Nanoporous Protein Particles Through Templating Mesoporous Silica Spheres. Advanced Materials, 2006, 18, 795-800.	11.1	115

#	Article	IF	CITATIONS
163	Tuning the Formation and Degradation of Layer-by-Layer Assembled Polymer Hydrogel Microcapsules. Langmuir, 2009, 25, 14079-14085.	1.6	115
164	Polyelectrolyte-Coated Colloid Spheres as Templates for Solâ^Gel Reactions. Chemistry of Materials, 2002, 14, 1909-1913.	3.2	114
165	Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10894-10898.	3.3	113
166	Monitoring ion-channel function in real time through quantum decoherence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18777-18782.	3.3	112
167	Toward Therapeutic Delivery with Layer-by-Layer Engineered Particles. ACS Nano, 2011, 5, 4252-4257.	7.3	112
168	Nanomedicine. Chemical Society Reviews, 2012, 41, 2537.	18.7	112
169	Rustâ€Mediated Continuous Assembly of Metal–Phenolic Networks. Advanced Materials, 2017, 29, 1606717.	11.1	112
170	Contiguous Silver Nanoparticle Coatings on Dielectric Spheres. Advanced Materials, 2002, 14, 732.	11.1	111
171	Capsosomes with Multilayered Subcompartments: Assembly and Loading with Hydrophobic Cargo. Advanced Functional Materials, 2010, 20, 59-66.	7.8	111
172	Engineering Multifunctional Capsules through the Assembly of Metal–Phenolic Networks. Angewandte Chemie, 2014, 126, 5652-5657.	1.6	111
173	Stabilization and Functionalization of Polymer Multilayers and Capsules via Thiolâ°Ene Click Chemistry. Chemistry of Materials, 2009, 21, 576-578.	3.2	110
174	Nanoencapsulated Microcrystalline Particles for Superamplified Biochemical Assays. Analytical Chemistry, 2002, 74, 5480-5486.	3.2	109
175	The role of capsule stiffness on cellular processing. Chemical Science, 2015, 6, 3505-3514.	3.7	109
176	Metal Ion-Directed Functional Metal–Phenolic Materials. Chemical Reviews, 2022, 122, 11432-11473.	23.0	108
177	Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine. ACS Nano, 2022, 16, 11769-11780.	7.3	108
178	Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab on A Chip, 2008, 8, 2182.	3.1	107
179	Superâ€Soft Hydrogel Particles with Tunable Elasticity in a Microfluidic Blood Capillary Model. Advanced Materials, 2014, 26, 7295-7299.	11.1	107
180	Assembly and Functionalization of DNAâ^'Polymer Microcapsules. ACS Nano, 2009, 3, 234-240.	7.3	106

#	Article	IF	CITATIONS
181	Layer-by-Layer Construction of Novel Biofunctional Fluorescent Microparticles for Immunoassay Applications. Journal of Colloid and Interface Science, 2001, 234, 356-362.	5.0	105
182	Investigation of the Interactions between Ligand-Stabilized Gold Nanoparticles and Polyelectrolyte Multilayer Films. Chemistry of Materials, 2005, 17, 4547-4553.	3.2	105
183	Polymersome‣oaded Capsules for Controlled Release of DNA. Small, 2011, 7, 2109-2119.	5.2	105
184	Template-Directed Synthesis of Silica Nanowires and Nanotubes from Cylindrical Core–Shell Polymer Brushes. Chemistry of Materials, 2012, 24, 1802-1810.	3.2	105
185	Engineering Fluorescent Poly(dopamine) Capsules. Langmuir, 2014, 30, 2921-2925.	1.6	105
186	Engineering and evaluating drug delivery particles in microfluidic devices. Journal of Controlled Release, 2014, 190, 139-149.	4.8	104
187	Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules. Biomaterials, 2009, 30, 5988-5998.	5.7	103
188	Fabrication of Polyelectrolyte Multilayer Films Comprising Nanoblended Layers. Journal of the American Chemical Society, 2004, 126, 2270-2271.	6.6	102
189	Homogeneous, Competitive Fluorescence Quenching Immunoassay Based on Gold Nanoparticle/Polyelectrolyte Coated Latex Particles. Journal of Physical Chemistry B, 2005, 109, 19604-19612.	1.2	102
190	Characterization of Adsorbate-Induced Ordering Transitions of Liquid Crystals within Monodisperse Droplets. Langmuir, 2009, 25, 9016-9024.	1.6	102
191	Emerging Techniques in Proteomics for Probing Nano–Bio Interactions. ACS Nano, 2012, 6, 10438-10448.	7.3	102
192	Nanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides. Soft Matter, 2014, 10, 2656-2663.	1.2	102
193	Triggered Enzymatic Degradation of DNA within Selectively Permeable Polymer Capsule Microreactors. Angewandte Chemie - International Edition, 2009, 48, 329-332.	7.2	101
194	Chargeâ€Shifting Click Capsules with Dualâ€Responsive Cargo Release Mechanisms. Advanced Materials, 2011, 23, H273-7.	11.1	101
195	Low-Fouling Poly(<i>N</i> -vinyl pyrrolidone) Capsules with Engineered Degradable Properties. Biomacromolecules, 2009, 10, 2839-2846.	2.6	100
196	Multicompartment Particle Assemblies for Bioinspired Encapsulated Reactions. Journal of Physical Chemistry Letters, 2011, 2, 2639-2649.	2.1	100
197	Enzyme Multilayer-Modified Porous Membranes as Biocatalysts. Chemistry of Materials, 2005, 17, 171-175.	3.2	99
198	Polyelectrolyte Functionalization of Electrospun Fibers. Chemistry of Materials, 2006, 18, 2397-2403.	3.2	99

#	Article	IF	Citations
199	Redox-Active Polymer Microcapsules for the Delivery of a Survivin-Specific siRNA in Prostate Cancer Cells. ACS Nano, 2011, 5, 1335-1344.	7.3	99
200	Monoclonal Antibody-Functionalized Multilayered Particles: Targeting Cancer Cells in the Presence of Protein Coronas. ACS Nano, 2015, 9, 2876-2885.	7.3	99
201	Compositional and Structural Engineering of DNA Multilayer Films. Langmuir, 2006, 22, 3251-3258.	1.6	98
202	Tunable Superhydrophobic and Optical Properties of Colloidal Films Coated with Blockâ€Copolymerâ€Micelles/Micelleâ€Multilayers. Advanced Materials, 2007, 19, 4364-4369.	11.1	98
203	Synthesis and functionalization of nanoengineered materials using click chemistry. Progress in Polymer Science, 2012, 37, 985-1003.	11.8	97
204	Biomimetic Replication of Microscopic Metal–Organic Framework Patterns Using Printed Protein Patterns. Advanced Materials, 2015, 27, 7293-7298.	11.1	97
205	Cellular Association and Cargo Release of Redoxâ€Responsive Polymer Capsules Mediated by Exofacial Thiols. Advanced Materials, 2011, 23, 3916-3921.	11.1	96
206	SupraCells: Living Mammalian Cells Protected within Functional Modular Nanoparticleâ€Based Exoskeletons. Advanced Materials, 2019, 31, e1900545.	11.1	96
207	Inverse Opals for Optical Affinity Biosensing. Advanced Materials, 2002, 14, 1629-1633.	11.1	94
208	Challenges facing colloidal delivery systems: From synthesis to the clinic. Current Opinion in Colloid and Interface Science, 2011, 16, 171-181.	3.4	94
209	The use of carbonic anhydrase to accelerate carbon dioxide capture processes. Journal of Chemical Technology and Biotechnology, 2015, 90, 3-10.	1.6	94
210	Particle Targeting in Complex Biological Media. Advanced Healthcare Materials, 2018, 7, 1700575.	3.9	94
211	Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell. Journal of Magnetism and Magnetic Materials, 2002, 240, 44-46.	1.0	93
212	Conjugated Polymer Inverse Opals for Potentiometric Biosensing. Advanced Materials, 2002, 14, 1837-1841.	11.1	93
213	Polymeric Multilayer Films Comprising Deconstructible Hydrogen-Bonded Stacks Confined between Electrostatically Assembled Layers. Macromolecules, 2003, 36, 2845-2851.	2.2	93
214	The Role of Particle Geometry and Mechanics in the Biological Domain. Advanced Healthcare Materials, 2012, 1, 35-47.	3.9	93
215	Template Synthesis of Stimuli-Responsive Nanoporous Polymer-Based Spheres via Sequential Assembly. Chemistry of Materials, 2006, 18, 4089-4100.	3.2	92
216	Spray Assembly of Metal–Phenolic Networks: Formation, Growth, and Applications. ACS Applied Materials & Distribution (1988) amp; Interfaces, 2018, 10, 33721-33729.	4.0	92

#	Article	IF	CITATIONS
217	Gold–Silica Inverse Opals by Colloidal Crystal Templating. Advanced Materials, 2002, 14, 908.	11.1	91
218	Triggering Release of Encapsulated Cargo. Angewandte Chemie - International Edition, 2010, 49, 2664-2666.	7.2	91
219	Composite Photonic Crystals from Semiconductor Nanocrystal/Polyelectrolyte-Coated Colloidal Spheres. Chemistry of Materials, 2003, 15, 2724-2729.	3.2	90
220	Poly(vinylpyrrolidone) for Bioconjugation and Surface Ligand Immobilization. Biomacromolecules, 2007, 8, 2950-2953.	2.6	90
221	Stabilization of Polymerâ∈Hydrogel Capsules via Thiolâ∈"Disulfide Exchange. Small, 2009, 5, 2601-2610.	5.2	90
222	Photoinitiated Alkyne–Azide Click and Radical Cross-Linking Reactions for the Patterning of PEG Hydrogels. Biomacromolecules, 2012, 13, 889-895.	2.6	90
223	Nanoporous Polymer Thin Films via Polyelectrolyte Templating. Advanced Materials, 2005, 17, 2058-2062.	11.1	89
224	Particle Carriers for Combating Multidrug-Resistant Cancer. ACS Nano, 2013, 7, 9512-9517.	7.3	89
225	Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells. Biomacromolecules, 2016, 17, 2268-2276.	2.6	89
226	Bypassing Multidrug Resistance in Cancer Cells with Biodegradable Polymer Capsules. Advanced Materials, 2010, 22, 5398-5403.	11.1	85
227	Ordered Mesoporous Metal–Phenolic Network Particles. Journal of the American Chemical Society, 2020, 142, 335-341.	6.6	85
228	Capsosomes with "Freeâ€Floating―Liposomal Subcompartments. Advanced Materials, 2011, 23, 4082-4087.	. 11.1	84
229	Mechanically Tunable, Selfâ€Adjuvanting Nanoengineered Polypeptide Particles. Advanced Materials, 2013, 25, 3468-3472.	11.1	84
230	Differential Responses of Pattern Recognition Receptors to Outer Membrane Vesicles of Three Periodontal Pathogens. PLoS ONE, 2016, 11, e0151967.	1.1	84
231	Poly(I-lysine) nanostructured particles for gene delivery and hormone stimulation. Biomaterials, 2010, 31, 1699-1706.	5.7	83
232	Effect of dendrimer on entrapment and release of bioactive from liposomes. International Journal of Pharmaceutics, 2002, 232, 157-162.	2.6	82
233	Triggered Cargo Release by Encapsulated Enzymatic Catalysis in Capsosomes. Nano Letters, 2011, 11, 4958-4963.	4.5	82
234	Nanostructured polymer assemblies formed at interfaces: applications from immobilization and encapsulation to stimuli-responsive release. Physical Chemistry Chemical Physics, 2011, 13, 4782.	1.3	82

#	Article	IF	Citations
235	Targeting Cancer Cells: Controlling the Binding and Internalization of Antibody-Functionalized Capsules. ACS Nano, 2012, 6, 6667-6674.	7.3	81
236	Investigation of the Factors Influencing the Formation of Dendrimer/Polyanion Multilayer Films. Langmuir, 2002, 18, 7669-7676.	1.6	80
237	Conductive Core–Shell Particles: An Approach to Self-Assembled Mesoscopic Wires. Advanced Materials, 2003, 15, 1113-1118.	11.1	80
238	Synthesis of Chemically Asymmetric Silica Nanobottles and Their Application for Cargo Loading and as Nanoreactors and Nanomotors. Angewandte Chemie - International Edition, 2016, 55, 14733-14737.	7.2	80
239	Improving Targeting of Metal–Phenolic Capsules by the Presence of Protein Coronas. ACS Applied Materials & Coronas. ACS Applied M	4.0	76
240	Nanoengineering Particles through Template Assembly. Chemistry of Materials, 2017, 29, 289-306.	3.2	76
241	Cross-Linked, Luminescent Spherical Colloidal and Hollow-Shell Particles. Langmuir, 2001, 17, 7670-7674.	1.6	75
242	Liquid Crystal Chemical Sensors That Cells Can Wear. Angewandte Chemie - International Edition, 2013, 52, 14011-14015.	7.2	75
243	Polyelectrolyte Blend Multilayers: A Versatile Route to Engineering Interfaces and Films. Advanced Functional Materials, 2008, 18, 17-26.	7.8	74
244	Template-Directed Mild Synthesis of Anatase Hybrid Nanotubes within Cylindrical Core–Shell–Corona Polymer Brushes. Macromolecules, 2012, 45, 6981-6988.	2.2	74
245	High Activity Enzyme Microcrystal Multilayer Films. Journal of the American Chemical Society, 2001, 123, 8121-8122.	6.6	73
246	Macromolecule Functionalization of Disulfide-Bonded Polymer Hydrogel Capsules and Cancer Cell Targeting. ACS Nano, 2012, 6, 1463-1472.	7.3	73
247	Nanoporous Peptide Particles for Encapsulating and Releasing Neurotrophic Factors in an Animal Model of Neurodegeneration. Advanced Materials, 2012, 24, 3362-3366.	11.1	73
248	Frontispiece: A Cytoprotective and Degradable Metal–Polyphenol Nanoshell for Single ell Encapsulation. Angewandte Chemie - International Edition, 2014, 53, .	7.2	73
249	Multifunctional Thrombinâ€Activatable Polymer Capsules for Specific Targeting to Activated Platelets. Advanced Materials, 2015, 27, 5153-5157.	11.1	73
250	Assembly of \hat{l}^2 -glucosidase multilayers on spherical colloidal particles and their use as active catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169, 287-293.	2.3	72
251	Bioâ€Click Chemistry: Enzymatic Functionalization of PEGylated Capsules for Targeting Applications. Angewandte Chemie - International Edition, 2012, 51, 7132-7136.	7.2	72
252	Biological and Physical Applications of Water-Based Metal Nanoparticles Synthesised in Organic Solution. ChemPhysChem, 2002, 3, 110-113.	1.0	71

#	Article	IF	CITATIONS
253	Surface-Modification of Polyelectrolyte Multilayer-Coated Particles for Biological Applications. Langmuir, 2003, 19, 6219-6225.	1.6	71
254	Assembly of Multilayer Films from Polyelectrolytes Containing Weak and Strong Acid Moieties. Langmuir, 2005, 21, 8785-8792.	1.6	71
255	Controlled Degradation of DNA Capsules with Engineered Restrictionâ€Enzyme Cut Sites. Small, 2009, 5, 1418-1421.	5. 2	71
256	Selfâ€Assembled Nanoparticles from Phenolic Derivatives for Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1700467.	3.9	71
257	Tunable UV-Responsive Organicâ^Inorganic Hybrid Capsules. Chemistry of Materials, 2009, 21, 195-197.	3.2	70
258	Preparation of Nano―and Microcapsules by Electrophoretic Polymer Assembly. Angewandte Chemie - International Edition, 2013, 52, 6455-6458.	7.2	70
259	Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers. Chemistry of Materials, 2004, 16, 3066-3073.	3.2	67
260	Monodisperse Emulsions through Templating Polyelectrolyte Multilayer Capsules. Chemistry of Materials, 2008, 20, 2063-2065.	3.2	67
261	Electrostatic Interactions between Polyelectrolytes and a Titania Precursor:Â Thin Film and Solution Studies. Langmuir, 2002, 18, 904-910.	1.6	66
262	Injectable and Sprayable Polyphenol-Based Hydrogels for Controlling Hemostasis. ACS Applied Bio Materials, 2020, 3, 1258-1266.	2.3	66
263	Thin Films of Polyelectrolyte-Encapsulated Catalase Microcrystals for Biosensing. Analytical Chemistry, 2003, 75, 3031-3037.	3.2	65
264	Fabrication of Polymerâ^'Nanoparticle Composite Inverse Opals by a One-Step Electrochemical Co-deposition Process. Nano Letters, 2004, 4, 177-181.	4.5	65
265	Synthesis of Discrete Alkylâ€Silica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes. Angewandte Chemie - International Edition, 2016, 55, 8375-8380.	7.2	65
266	Oxidationâ€Mediated Kinetic Strategies for Engineering Metal–Phenolic Networks. Angewandte Chemie - International Edition, 2019, 58, 12563-12568.	7.2	65
267	Particle engineering enabled by polyphenol-mediated supramolecular networks. Nature Communications, 2020, 11, 4804.	5.8	65
268	Infiltration of Macromolecules into Nanoporous Silica Particles. Macromolecules, 2007, 40, 7594-7600.	2.2	64
269	Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes. ACS Applied Materials & Description (1988) A	4.0	64
270	Cobalt Phosphate Nanostructures for Non-Enzymatic Glucose Sensing at Physiological pH. ACS Applied Materials & District Physiological	4.0	64

#	Article	IF	Citations
271	Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. JCI Insight, 2020, 5, .	2.3	64
272	Nanostructured particles assembled from natural building blocks for advanced therapies. Chemical Society Reviews, 2022, 51, 4287-4336.	18.7	64
273	Noncovalent Liposome Linkage and Miniaturization of Capsosomes for Drug Delivery. Biomacromolecules, 2010, 11, 3548-3555.	2.6	63
274	Thermoresponsive Nanoassemblies:Â Layer-by-Layer Assembly of Hydrophilicâ^'Hydrophobic Alternating Copolymers. Macromolecules, 2005, 38, 3414-3419.	2.2	62
275	Oligosilsesquioxanes as Versatile Building Blocks for the Preparation of Self-Assembled Thin Films. Journal of the American Chemical Society, 2002, 124, 8172-8180.	6.6	61
276	Influence of Ionic Strength on the Deposition of Metal–Phenolic Networks. Langmuir, 2017, 33, 10616-10622.	1.6	61
277	Monodisperse Polyelectrolyte-Supported Asymmetric Lipid-Bilayer Vesicles. Advanced Materials, 2005, 17, 738-743.	11.1	60
278	Endocytic pHâ€Triggered Degradation of Nanoengineered Multilayer Capsules. Advanced Materials, 2014, 26, 1901-1905.	11.1	60
279	Boronate–Phenolic Network Capsules with Dual Response to Acidic pH and <i>cis</i> fi>â€Diols. Advanced Healthcare Materials, 2015, 4, 1796-1801.	3.9	60
280	Multiligand Metal–Phenolic Assembly from Green Tea Infusions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7632-7639.	4.0	60
281	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
282	Polyelectrolyte Blend Multilayer Films:Â Surface Morphology, Wettability, and Protein Adsorption Characteristics. Langmuir, 2007, 23, 4944-4949.	1.6	59
283	Biofunctional metal–phenolic films from dietary flavonoids. Chemical Communications, 2017, 53, 1068-1071.	2.2	59
284	Self-Assembly of Nano- to Macroscopic Metal–Phenolic Materials. Chemistry of Materials, 2018, 30, 5750-5758.	3.2	59
285	Improved Auditory Nerve Survival with Nanoengineered Supraparticles for Neurotrophin Delivery into the Deafened Cochlea. PLoS ONE, 2016, 11, e0164867.	1.1	59
286	Modulated Fragmentation of Proapoptotic Peptide Nanoparticles Regulates Cytotoxicity. Journal of the American Chemical Society, 2017, 139, 4009-4018.	6.6	58
287	Selfâ€Assembled Metal–Phenolic Networks on Emulsions as Lowâ€Fouling and pHâ€Responsive Particles. Small, 2018, 14, e1802342.	5.2	58
288	Nanoporous Metal–Phenolic Particles as Ultrasound Imaging Probes for Hydrogen Peroxide. Advanced Healthcare Materials, 2015, 4, 2170-2175.	3.9	57

#	Article	IF	Citations
289	Surface chemical activation of quartz crystal microbalance gold electrodes â€" analysis by frequency changes, contact angle measurements and grazing angle FTIR. Thin Solid Films, 1995, 260, 192-199.	0.8	56
290	Layer-by-Layer Assembly of Nanoblended Thin Films:Â Poly(allylamine hydrochloride) and a Binary Mixture of a Synthetic and Natural Polyelectrolyte. Macromolecules, 2004, 37, 6537-6543.	2.2	56
291	Probing the Permeability of Polyelectrolyte Multilayer Capsules via a Molecular Beacon Approach. Langmuir, 2007, 23, 4554-4562.	1.6	56
292	Immersive Polymer Assembly on Immobilized Particles for Automated Capsule Preparation. Advanced Materials, 2013, 25, 6874-6878.	11.1	56
293	Polyphenol-Based Nanoparticles for Intracellular Protein Delivery <i>via</i> Competing Supramolecular Interactions. ACS Nano, 2020, 14, 12972-12981.	7.3	56
294	DNA binding and hybridization on gold and derivatized surfaces. Sensors and Actuators B: Chemical, 1997, 41, 189-197.	4.0	55
295	Two-Component, Ultrathin Microcapsules Prepared by a Core-Mediated Layer-by-Layer Approach. Chemistry of Materials, 2004, 16, 2107-2112.	3.2	55
296	Assembly and Degradation of Lowâ€Fouling Clickâ€Functionalized Poly(ethylene glycol)â€Based Multilayer Films and Capsules. Small, 2011, 7, 1075-1085.	5.2	55
297	Flakeâ€Shell Capsules: Adjustable Inorganic Structures. Small, 2012, 8, 2345-2349.	5.2	55
298	Synthesis of Metal Nanoparticles in Metalâ€Phenolic Networks: Catalytic and Antimicrobial Applications of Coated Textiles. Advanced Healthcare Materials, 2018, 7, 1700934.	3.9	55
299	Nanoengineering of Poly(ethylene glycol) Particles for Stealth and Targeting. Langmuir, 2018, 34, 10817-10827.	1.6	55
300	Person-Specific Biomolecular Coronas Modulate Nanoparticle Interactions with Immune Cells in Human Blood. ACS Nano, 2020, 14, 15723-15737.	7.3	55
301	Approaches to Quantifying and Visualizing Polyelectrolyte Multilayer Film Formation on Particles. Analytical Chemistry, 2006, 78, 5913-5919.	3.2	54
302	Exploiting the Directionality of DNA: Controlled Shrinkage of Engineered Oligonucleotide Capsules. Angewandte Chemie - International Edition, 2007, 46, 2677-2680.	7.2	54
303	ll–VI semiconductor nanocrystals in thin films and colloidal crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 135-144.	2.3	53
304	Peptideâ€Functionalized, Lowâ€Biofouling Click Multilayers for Promoting Cell Adhesion and Growth. Small, 2009, 5, 444-448.	5.2	53
305	Link between Low-Fouling and Stealth: A Whole Blood Biomolecular Corona and Cellular Association Analysis on Nanoengineered Particles. ACS Nano, 2019, 13, 4980-4991.	7.3	53
306	Glycogen as a Building Block for Advanced Biological Materials. Advanced Materials, 2020, 32, e1904625.	11.1	53

#	Article	IF	Citations
307	Immobilisation of IgG onto gold surfaces and its interaction with anti-IgG studied by surface plasmon resonance. Journal of Immunological Methods, 1994, 175, 149-160.	0.6	52
308	In-situ measurement of DNA immobilization and hybridization using a 27MHz quartz crystal microbalance. Colloids and Surfaces B: Biointerfaces, 1998, 10, 199-204.	2.5	52
309	Colloid Surface Engineering via Deposition of Multilayered Thin Films from Polyelectrolyte Blend Solutions. Langmuir, 2005, 21, 4328-4333.	1.6	52
310	Nanoassembly of biocompatible microcapsules for urease encapsulation and their use as biomimetic reactors. Chemical Communications, 2006, , 2150.	2.2	52
311	Tuning the Permeability of Polymer Hydrogel Capsules: An Investigation of Cross-Linking Density, Membrane Thickness, and Cross-Linkers. Langmuir, 2011, 27, 1724-1730.	1.6	52
312	Phenolic film engineering for template-mediated microcapsule preparation. Polymer Journal, 2014, 46, 452-459.	1.3	52
313	Preparation of Nanoporous Polyelectrolyte Multilayer Films via Nanoparticle Templating. Chemistry of Materials, 2006, 18, 5480-5485.	3.2	51
314	A Biomolecular "Shipâ€inâ€aâ€Bottleâ€i Continuous RNA Synthesis Within Hollow Polymer Hydrogel Assemblies. Advanced Materials, 2010, 22, 720-723.	11.1	51
315	Subcompartmentalized Polymer Hydrogel Capsules with Selectively Degradable Carriers and Subunits. Small, 2010, 6, 1558-1564.	5 . 2	51
316	In Situ Characterization of Protein Corona Formation on Silica Microparticles Using Confocal Laser Scanning Microscopy Combined with Microfluidics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2459-2469.	4.0	51
317	Modular Assembly of Host–Guest Metal–Phenolic Networks Using Macrocyclic Building Blocks. Angewandte Chemie - International Edition, 2020, 59, 275-280.	7.2	51
318	Protein Capsules Assembled <i>via </i> lsobutyramide Grafts: Sequential Growth, Biofunctionalization, and Cellular Uptake. ACS Nano, 2012, 6, 7584-7594.	7.3	50
319	Advanced Subcompartmentalized Microreactors: Polymer Hydrogel Carriers Encapsulating Polymer Capsules and Liposomes. Small, 2013, 9, 3573-3583.	5.2	50
320	Mechanics of pH-Responsive Hydrogel Capsules. Langmuir, 2013, 29, 9814-9823.	1.6	50
321	<i>In Vivo</i> T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS Nano, 2021, 15, 3736-3753.	7.3	50
322	Multilayer thin films based on polyelectrolyte-complex nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207, 33-40.	2.3	49
323	Converging layer-by-layer polyelectrolyte microcapsule and cubic lyotropic liquid crystalline nanoparticle approaches for molecular encapsulation. Soft Matter, 2011, 7, 4257.	1.2	49
324	Engineering Cellular Degradation of Multilayered Capsules through Controlled Cross-Linking. ACS Nano, 2012, 6, 10186-10194.	7.3	49

#	Article	lF	CITATIONS
325	Increasing the Impact of Materials in and beyond Bio-Nano Science. Journal of the American Chemical Society, 2016, 138, 13449-13456.	6.6	49
326	Shape-Dependent Activation of Cytokine Secretion by Polymer Capsules in Human Monocyte-Derived Macrophages. Biomacromolecules, 2016, 17, 1205-1212.	2.6	49
327	Surface Interactions during Polyelectrolyte Multilayer Buildup. 1. Interactions and Layer Structure in Dilute Electrolyte Solutions. Langmuir, 2004, 20, 5432-5438.	1.6	48
328	Effect of UVâ^'Irradiation on Polyelectrolyte Multilayered Films and Hollow Capsules Prepared by Layer-by-Layer Assembly. Macromolecules, 2006, 39, 8067-8074.	2.2	48
329	Stabilization of DNA Multilayer Films Through Oligonucleotide Crosslinking. Small, 2008, 4, 612-618.	5.2	48
330	Surface "Click―Chemistry on Brominated Plasma Polymer Thin Films. Langmuir, 2010, 26, 3388-3393.	1.6	48
331	Fabrication of asymmetric "Janus―particles via plasma polymerization. Chemical Communications, 2010, 46, 5121.	2.2	48
332	A Framework to Account for Sedimentation and Diffusion in Particle–Cell Interactions. Langmuir, 2016, 32, 12394-12402.	1.6	48
333	Modular Metal–Organic Polyhedra Superassembly: From Molecular‣evel Design to Targeted Drug Delivery. Advanced Materials, 2019, 31, e1806774.	11.1	48
334	Optical Properties of Nanoparticle-Based Metallodielectric Inverse Opals. Small, 2004, 1, 122-130.	5.2	47
335	Manipulating the Salt and Thermal Stability of DNA Multilayer Films via Oligonucleotide Length. Biomacromolecules, 2008, 9, 3070-3078.	2.6	47
336	Controlled release of DNA from poly(vinylpyrrolidone) capsules using cleavable linkers. Biomaterials, 2011, 32, 6277-6284.	5.7	47
337	In situ layer-by-layer assembled carbonic anhydrase-coated hollow fiber membrane contactor for rapid CO2 absorption. Journal of Membrane Science, 2016, 514, 556-565.	4.1	47
338	ATRP-mediated continuous assembly of polymers for the preparation of nanoscale films. Chemical Communications, 2011, 47, 12601.	2.2	46
339	Ultrathin, bioresponsive and drug-functionalized protein capsules. Journal of Materials Chemistry, 2012, 22, 21434.	6.7	46
340	Intracellularly Degradable Hydrogenâ€Bonded Polymer Capsules. Advanced Functional Materials, 2014, 24, 6187-6194.	7.8	46
341	Engineering of Nebulized Metal–Phenolic Capsules for Controlled Pulmonary Deposition. Advanced Science, 2020, 7, 1902650.	5.6	46
342	Fluorescence Studies of the Binding of Anionic Derivatives of Pyrene and Fluorescein to Cationic Polyelectrolytes in Aqueous Solution. Macromolecules, 1998, 31, 7365-7377.	2.2	45

#	Article	IF	CITATIONS
343	Clickable Poly(2-oxazoline) Architectures for the Fabrication of Low-Fouling Polymer Capsules. ACS Macro Letters, 2013, 2, 1069-1072.	2.3	45
344	Particle generation, functionalization and sortase A–mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use. Nature Protocols, 2015, 10, 90-105.	5 . 5	45
345	Tuning the Mechanical Behavior of Metal–Phenolic Networks through Building Block Composition. ACS Applied Materials & Diterfaces, 2019, 11, 6404-6410.	4.0	45
346	Modular Assembly of Layer-by-Layer Capsules with Tailored Degradation Profiles. Langmuir, 2011, 27, 1275-1280.	1.6	44
347	Construction and Degradation of Polyrotaxane Multilayers. Advanced Materials, 2011, 23, 3026-3029.	11.1	44
348	Peptideâ€Tunable Drug Cytotoxicity via Oneâ€Step Assembled Polymer Nanoparticles. Advanced Materials, 2014, 26, 2398-2402.	11.1	44
349	Targeting Ability of Affibody-Functionalized Particles Is Enhanced by Albumin but Inhibited by Serum Coronas. ACS Macro Letters, 2015, 4, 1259-1263.	2.3	44
350	Real Time Monitoring of the Detergency Process by Using a Quartz Crystal Microbalanceâ€. Langmuir, 1998, 14, 575-577.	1.6	43
351	Nanoengineered Films via Surfaceâ€Confined Continuous Assembly of Polymers. Small, 2011, 7, 2863-2867.	5 . 2	43
352	Layer-by-Layer Polymer Coating on Discrete Particles of Cubic Lyotropic Liquid Crystalline Dispersions (Cubosomes). Langmuir, 2013, 29, 12891-12900.	1.6	43
353	In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. Biomedical Optics Express, 2014, 5, 1250.	1.5	43
354	Advancing Metal–Phenolic Networks for Visual Information Storage. ACS Applied Materials & amp; Interfaces, 2019, 11, 29305-29311.	4.0	43
355	Sulfoxideâ€Containing Polymerâ€Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. Advanced Science, 2020, 7, 2000406.	5.6	43
356	Effect of Oligonucleotide Length on the Assembly of DNA Materials: Molecular Dynamics Simulations of Layer-by-Layer DNA Films. Langmuir, 2010, 26, 17339-17347.	1.6	42
357	Bromo <i>iso</i> isobutyramide as an Intermolecular Surface Binder for the Preparation of Freeâ€standing Biopolymer Assemblies. Advanced Materials, 2011, 23, 5668-5673.	11.1	42
358	Lactosylated Glycogen Nanoparticles for Targeting Prostate Cancer Cells. ACS Applied Materials & Interfaces, 2017, 9, 16869-16879.	4.0	42
359	Determination of lateral diffusion coefficients in air-water monolayers by fluorescence quenching measurements. Journal of the American Chemical Society, 1991, 113, 4838-4843.	6.6	41
360	Modulating the Pattern Quality of Micropatterned Multilayer Films Prepared by Layer-by-Layer Self-Assembly. Langmuir, 2006, 22, 1356-1364.	1.6	41

#	Article	IF	Citations
361	Targeting Dendritic Cells: The Role of Specific Receptors in the Internalization of Polymer Capsules. Advanced Healthcare Materials, 2013, 2, 940-944.	3.9	41
362	Nearâ€Incompressible Faceted Polymer Microcapsules from Metalâ€Organic Framework Templates. Advanced Materials, 2013, 25, 5767-5771.	11.1	41
363	Mesoporous Silica Supraparticles for Sustained Innerâ€Ear Drug Delivery. Small, 2014, 10, 4244-4248.	5.2	41
364	Lithium Niobate Inverse Opals Prepared by Templating Colloidal Crystals of Polyelectrolyte-Coated Spheres. Advanced Materials, 2003, 15, 205-210.	11.1	40
365	Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Macromolecules, 2011, 44, 1194-1202.	2.2	40
366	Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization. Journal of Membrane Science, 2012, 409-410, 9-15.	4.1	40
367	Versatile Loading of Diverse Cargo into Functional Polymer Capsules. Advanced Science, 2015, 2, 1400007.	5.6	40
368	Standardizing Nanomaterials. ACS Nano, 2016, 10, 9763-9764.	7.3	40
369	Expanding the Toolbox of Metal–Phenolic Networks via Enzymeâ€Mediated Assembly. Angewandte Chemie - International Edition, 2020, 59, 1711-1717.	7.2	40
370	Functionalization of Colloids with Robust Inorganic-Based Lipid Coatings. Macromolecules, 2004, 37, 9947-9953.	2.2	39
371	Peptide Nucleic Acid Films and Capsules: Assembly and Enzymatic Degradation. Macromolecular Bioscience, 2010, 10, 488-495.	2.1	39
372	Cobalt-Directed Assembly of Antibodies onto Metal–Phenolic Networks for Enhanced Particle Targeting. Nano Letters, 2020, 20, 2660-2666.	4.5	39
373	Giant self-contained metallosupramolecular entities. Chemical Communications, 1999, , 1579-1580.	2.2	38
374	A Molecular Beacon Approach to Measuring the DNA Permeability of Thin Films. Journal of the American Chemical Society, 2005, 127, 10014-10015.	6.6	38
375	One-pot ultrasonic synthesis of multifunctional microbubbles and microcapsules using synthetic thiolated macromolecules. Chemical Communications, 2011, 47, 4096.	2.2	38
376	Self-Assembled Stimuli-Responsive Polyrotaxane Core–Shell Particles. Biomacromolecules, 2014, 15, 53-59.	2.6	38
377	Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration. Langmuir, 2015, 31, 6211-6219.	1.6	38
378	Redox-Sensitive PEG–Polypeptide Nanoporous Particles for Survivin Silencing in Prostate Cancer Cells. Biomacromolecules, 2015, 16, 2168-2178.	2.6	38

#	Article	IF	CITATIONS
379	Modulating Targeting of Poly(ethylene glycol) Particles to Tumor Cells Using Bispecific Antibodies. Advanced Healthcare Materials, 2019, 8, e1801607.	3.9	38
380	Programmable Permeability of Metal–Phenolic Network Microcapsules. Chemistry of Materials, 2020, 32, 6975-6982.	3.2	38
381	Photonic Materials from Self-Assembly of "Tolerant―Coreâ^'Shell Coated Colloids. Langmuir, 2002, 18, 4150-4154.	1.6	37
382	Formation of Polyelectrolyte Multilayer Films at Interfaces Between Thermotropic Liquid Crystals and Aqueous Phases. Advanced Materials, 2006, 18, 850-854.	11.1	37
383	Tuning the Mechanical Properties of Nanoporous Hydrogel Particles via Polymer Cross-Linking. Langmuir, 2013, 29, 9824-9831.	1.6	37
384	An Enzymeâ€Coated Metal–Organic Framework Shell for Synthetically Adaptive Cell Survival. Angewandte Chemie, 2017, 129, 8630-8635.	1.6	37
385	Electrochemical Behavior and Redox-Dependent Disassembly of Gallic Acid/Fe ^{III} Metal–Phenolic Networks. ACS Applied Materials & Interfaces, 2018, 10, 5828-5834.	4.0	37
386	Supramolecular Metal–Phenolic Gels for the Crystallization of Active Pharmaceutical Ingredients. Small, 2018, 14, e1801202.	5.2	37
387	Polyelectrolyte Multilayer Films of Different Charge Density Copolymers with Synergistic Nonelectrostatic Interactions Prepared by the Layer-by-Layer Technique. Langmuir, 2004, 20, 2730-2738.	1.6	36
388	Multilayer Buildup and Biofouling Characteristics of PSS-b-PEG Containing Films. Langmuir, 2010, 26, 9720-9727.	1.6	36
389	Self-Assembly of a Metal–Phenolic Sorbent for Broad-Spectrum Metal Sequestration. ACS Applied Materials & Company (1988) amp; Interfaces, 2020, 12, 3746-3754.	4.0	36
390	Understanding the Uptake of Nanomedicines at Different Stages of Brain Cancer Using a Modular Nanocarrier Platform and Precision Bispecific Antibodies. ACS Central Science, 2020, 6, 727-738.	5. 3	36
391	Fluidized Bed Layer-by-Layer Microcapsule Formation. Langmuir, 2014, 30, 10028-10034.	1.6	35
392	Gel-Mediated Electrospray Assembly of Silica Supraparticles for Sustained Drug Delivery. ACS Applied Materials & Drug Delivery. ACS App	4.0	35
393	Glycogen-nucleic acid constructs for gene silencing in multicellular tumor spheroids. Biomaterials, 2018, 176, 34-49.	5.7	35
394	Protein Adsorption and Coordination-Based End-Tethering of Functional Polymers on Metal–Phenolic Network Films. Biomacromolecules, 2019, 20, 1421-1428.	2.6	35
395	Exploiting Supramolecular Dynamics in Metal–Phenolic Networks to Generate Metal–Oxide and Metal–Carbon Networks. Angewandte Chemie - International Edition, 2021, 60, 14586-14594.	7.2	35
396	Probing the Conformation of Polyelectrolytes in Mesoporous Silica Spheres. Langmuir, 2008, 24, 4224-4230.	1.6	34

#	Article	IF	CITATIONS
397	Clickâ€Engineered, Bioresponsive, Drugâ€Loaded PEG Spheres. Advanced Materials, 2009, 21, 4348-4352.	11.1	34
398	Confinement of Acoustic Cavitation for the Synthesis of Protein-Shelled Nanobubbles for Diagnostics and Nucleic Acid Delivery. ACS Macro Letters, 2012, 1, 853-856.	2.3	34
399	A Partially Graphitic Mesoporous Carbon Membrane with Three-Dimensionally Networked Nanotunnels for Ultrasensitive Electrochemical Detection. Chemistry of Materials, 2017, 29, 5286-5293.	3.2	34
400	Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt–tannic acid networks. Nanoscale, 2019, 11, 1921-1928.	2.8	34
401	Phenolische Bausteine f $ ilde{A}^{1}\!\!/\!4$ r die Assemblierung von Funktionsmaterialien. Angewandte Chemie, 2019, 131, 1920-1945.	1.6	34
402	Engineered Coatings via the Assembly of Aminoâ€Quinone Networks. Angewandte Chemie - International Edition, 2021, 60, 2346-2354.	7.2	34
403	Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes., 1998, 37, 2201.		34
404	Assembly of Bioactive Nanoparticles via Metal–Phenolic Complexation. Advanced Materials, 2022, 34, e2108624.	11.1	34
405	Particles on the Move: Intracellular Trafficking and Asymmetric Mitotic Partitioning of Nanoporous Polymer Particles. ACS Nano, 2013, 7, 5558-5567.	7.3	33
406	Dynamic Flow Impacts Cell–Particle Interactions: Sedimentation and Particle Shape Effects. Langmuir, 2016, 32, 10995-11001.	1.6	33
407	Analysing intracellular deformation of polymer capsules using structured illumination microscopy. Nanoscale, 2016, 8, 11924-11931.	2.8	33
408	Cell-Conditioned Protein Coronas on Engineered Particles Influence Immune Responses. Biomacromolecules, 2017, 18, 431-439.	2.6	33
409	The Biomolecular Corona in 2D and Reverse: Patterning Metal–Phenolic Networks on Proteins, Lipids, Nucleic Acids, Polysaccharides, and Fingerprints. Advanced Functional Materials, 2020, 30, 1905805.	7.8	33
410	Layerâ€byâ€layer assembly of weakâ€strong copolymer polyelectrolytes: A route to morphological control of thin films. Journal of Polymer Science Part A, 2007, 45, 4341-4351.	2.5	32
411	Phototriggered, Metal-Free Continuous Assembly of Polymers for the Fabrication of Ultrathin Films. ACS Macro Letters, 2012, 1, 1020-1023.	2.3	32
412	Physicochemical and Immunological Assessment of Engineered Pure Protein Particles with Different Redox States. ACS Nano, 2015, 9, 2433-2444.	7.3	32
413	Role of the Protein Corona Derived from Human Plasma in Cellular Interactions between Nanoporous Human Serum Albumin Particles and Endothelial Cells. Bioconjugate Chemistry, 2017, 28, 2062-2068.	1.8	32
414	Gravimetric Monitoring of Nonionic Surfactant Adsorption from Nonaqueous Media onto Quartz Crystal Microbalance Electrodes and Colloidal Silica. Langmuir, 1996, 12, 2145-2152.	1.6	31

#	Article	IF	CITATIONS
415	Assembling DNA into Advanced Materials: From Nanostructured Films to Biosensing and Delivery Systems. Advanced Materials, 2007, 19, 3727-3730.	11.1	31
416	Modular Click Assembly of Degradable Capsules Using Polyrotaxanes. ACS Nano, 2012, 6, 4686-4693.	7.3	31
417	Formation and Degradation of Layer-by-Layer-Assembled Polyelectrolyte Polyrotaxane Capsules. Langmuir, 2013, 29, 7203-7208.	1.6	31
418	Templated assembly of albumin-based nanoparticles for simultaneous gene silencing and magnetic resonance imaging. Nanoscale, 2014, 6, 11676-11680.	2.8	31
419	Capsosomes as Long-Term Delivery Vehicles for Protein Therapeutics. Langmuir, 2015, 31, 7776-7781.	1.6	31
420	Microfluidic Examination of the "Hard―Biomolecular Corona Formed on Engineered Particles in Different Biological Milieu. Biomacromolecules, 2018, 19, 2580-2594.	2.6	31
421	Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake. Biomacromolecules, 2019, 20, 3592-3600.	2.6	31
422	An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino. Chemistry of Materials, 2019, 31, 8577-8581.	3.2	31
423	Reflectivity behavior of opals of gold nanoparticle coated spheres. Applied Physics Letters, 2004, 84, 3960-3962.	1.5	30
424	Synthesis, Multilayer Film Assembly, and Capsule Formation of Macromolecularly Engineered Acrylic Acid and Styrene Sulfonate Block Copolymers. Langmuir, 2008, 24, 8981-8990.	1.6	30
425	Flow-Based Assembly of Layer-by-Layer Capsules through Tangential Flow Filtration. Langmuir, 2015, 31, 9054-9060.	1.6	30
426	Low-Fouling and Biodegradable Protein-Based Particles for Thrombus Imaging. ACS Nano, 2018, 12, 6988-6996.	7.3	30
427	Stereoselective Growth of Small Molecule Patches on Nanoparticles. Journal of the American Chemical Society, 2021, 143, 12138-12144.	6.6	30
428	(Super)hydrophobic and Multilayered Amphiphilic Films Prepared by Continuous Assembly of Polymers. Advanced Functional Materials, 2013, 23, 5159-5166.	7.8	29
429	Multilayered polymer capsules with switchable permeability. Polymer, 2014, 55, 6451-6459.	1.8	29
430	Surface-Initiated Polymerization within Mesoporous Silica Spheres for the Modular Design of Charge-Neutral Polymer Particles. Langmuir, 2014, 30, 6286-6293.	1.6	29
431	Polymer Capsules for Plaqueâ€Targeted In Vivo Delivery. Advanced Materials, 2016, 28, 7703-7707.	11.1	29
432	Nanomedicine toward 2040. Nano Letters, 2020, 20, 1481-1482.	4.5	29

#	Article	IF	Citations
433	Optically Characterized DNA Multilayered Assemblies and Phenomenological Modeling of Layer-by-Layer Hybridization. Journal of Physical Chemistry C, 2009, 113, 21185-21195.	1.5	28
434	Influence of Salt Concentration on the Assembly of DNA Multilayer Films. Langmuir, 2010, 26, 3415-3422.	1.6	28
435	Structure Governs the Deformability of Polymer Particles in a Microfluidic Blood Capillary Model. ACS Macro Letters, 2015, 4, 1205-1209.	2.3	28
436	Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films. ACS Applied Materials & Distribution (2016), 8, 7449-7455.	4.0	28
437	Title is missing!. Journal of Materials Science, 1999, 34, 5285-5291.	1.7	27
438	Novel Engineered Ion Channel Provides Controllable Ion Permeability for Polyelectrolyte Microcapsules Coated with a Lipid Membrane. Advanced Functional Materials, 2009, 19, 201-208.	7.8	27
439	Drug Delivery: Mesoporous Silica Supraparticles for Sustained Innerâ€Ear Drug Delivery (Small 21/2014). Small, 2014, 10, 4243-4243.	5.2	27
440	Metal–Phenolic Supramolecular Gelation. Angewandte Chemie, 2016, 128, 14007-14011.	1.6	27
441	Selective Metal–Phenolic Assembly from Complex Multicomponent Mixtures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17714-17721.	4.0	27
442	Influence of Poly(ethylene glycol) Molecular Architecture on Particle Assembly and ⟨i⟩Ex Vivo⟨ i⟩ Particle–Immune Cell Interactions in Human Blood. ACS Nano, 2021, 15, 10025-10038.	7. 3	27
443	Luminescent Metalâ€Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie - International Edition, 2021, 60, 24968-24975.	7.2	27
444	Surface plasmon resonance in gold nanoparticle infiltrated dielectric opals. Journal of Applied Physics, 2005, 97, 086103.	1.1	26
445	Degradation of liposomal subcompartments in PEGylated capsosomes. Soft Matter, 2011, 7, 9638.	1.2	26
446	Stiffness-mediated adhesion of cervical cancer cells to soft hydrogel films. Soft Matter, 2013, 9, 4580.	1.2	26
447	From polymeric films to nanoreactors. Macromolecular Symposia, 1999, 145, 75-81.	0.4	25
448	Templateâ€Mediated Assembly of DNA into Microcapsules for Immunological Modulation. Small, 2020, 16, e2002750.	5.2	25
449	Self-assembly and magnetism in core-shell microspheres. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1515-1518.	0.9	24
450	Multivalent-Ion-Mediated Stabilization of Hydrogen-Bonded Multilayers. Advanced Functional Materials, 2006, 16, 1179-1186.	7.8	24

#	Article	lF	CITATIONS
451	Mesoporous Silica-Templated Assembly of Luminescent Polyester Particles. Chemistry of Materials, 2009, 21, 4310-4315.	3.2	24
452	Factors influencing the growth and topography of nanoscale films fabricated by ROMP-mediated continuous assembly of polymers. Polymer Chemistry, 2013, 4, 68-75.	1.9	24
453	New Insights into the Substrate–Plasma Polymer Interface. Journal of Physical Chemistry B, 2011, 115, 6495-6502.	1.2	23
454	Assembly-Controlled Permeability of Layer-by-Layer Polymeric Microcapsules Using a Tapered Fluidized Bed. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27940-27947.	4.0	23
455	Revisiting cell–particle association in vitro: A quantitative method to compare particle performance. Journal of Controlled Release, 2019, 307, 355-367.	4.8	23
456	A Focus on "Bio―in Bio–Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Advanced Healthcare Materials, 2021, 10, e2100574.	3.9	23
457	Integrated Catalytic Activity of Patterned Multilayer Films Based on pHâ€Induced Electrostatic Properties of Enzymes. Advanced Materials, 2008, 20, 1843-1848.	11.1	22
458	Tailoring the Chain Packing in Ultrathin Polyelectrolyte Films Formed by Sequential Adsorption: Nanoscale Probing by Positron Annihilation Spectroscopy. Journal of the American Chemical Society, 2012, 134, 19808-19819.	6.6	22
459	Nanoparticles assembled via pH-responsive reversible segregation of cyclodextrins in polyrotaxanes. Nanoscale, 2016, 8, 15589-15596.	2.8	22
460	Fabrication of heterogeneous macroporous materials based on a sequential electrostatic deposition process. Chemical Communications, 2001, , 489-490.	2.2	21
461	Spray Assembled, Cross-Linked Polyelectrolyte Multilayer Membranes for Salt Removal. Langmuir, 2014, 30, 8784-8790.	1.6	21
462	Probing cell internalisation mechanics with polymer capsules. Nanoscale, 2016, 8, 17096-17101.	2.8	21
463	Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24635-24643.	4.0	21
464	Metal–Phenolic Networks as Tunable Buffering Systems. Chemistry of Materials, 2021, 33, 2557-2566.	3.2	21
465	Fluorinated Metal–Organic Coatings with Selective Wettability. Journal of the American Chemical Society, 2021, 143, 9972-9981.	6.6	21
466	Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 6219-6228.	4.0	20
467	Tuning the Properties of Polymer Capsules for Cellular Interactions. Bioconjugate Chemistry, 2017, 28, 1859-1866.	1.8	20
468	Patterned Poly(dopamine) Films for Enhanced Cell Adhesion. Bioconjugate Chemistry, 2017, 28, 75-80.	1.8	20

#	Article	IF	CITATIONS
469	Engineering Biocoatings To Prolong Drug Release from Supraparticles. Biomacromolecules, 2019, 20, 3425-3434.	2.6	20
470	Ricocheting Droplets Moving on Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1901846.	5.6	20
471	Macromolecular Engineering of Thermoresponsive Metal–Phenolic Networks. Journal of the American Chemical Society, 2022, 144, 503-514.	6.6	20
472	Mechanical Characterization of Ultrasonically Synthesized Microbubble Shells by Flow Cytometry and AFM. ACS Applied Materials & Interfaces, 2013, 5, 10920-10925.	4.0	19
473	Engineering Enzymeâ€Cleavable Hybrid Click Capsules with a pHâ€Sheddable Coating for Intracellular Degradation. Small, 2014, 10, 4080-4086.	5.2	19
474	Immobilization and Intracellular Delivery of Structurally Nanoengineered Antimicrobial Peptide Polymers Using Polyphenolâ€Based Capsules. Advanced Functional Materials, 2022, 32, 2107341.	7.8	19
475	Role of Molecular Interactions in Supramolecular Polypeptide–Polyphenol Networks for Engineering Functional Materials . Journal of the American Chemical Society, 2022, 144, 12510-12519.	6.6	19
476	Preparation of J-Aggregate Liposome Dispersions and Their Chromic Transformation. Langmuir, 2004, 20, 5718-5723.	1.6	18
477	Assembly of Nanostructured Films with Hydrophobic Subcompartments via Continuous Assembly of Polymers. Macromolecules, 2013, 46, 7789-7796.	2.2	18
478	Mold-Templated Inorganic–Organic Hybrid Supraparticles for Codelivery of Drugs. Biomacromolecules, 2014, 15, 4146-4151.	2.6	18
479	Templated Polymer Replica Nanoparticles to Facilitate Assessment of Material-Dependent Pharmacokinetics and Biodistribution. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33683-33694.	4.0	18
480	Cellular Targeting of Bispecific Antibody-Functionalized Poly(ethylene glycol) Capsules: Do Shape and Size Matter?. ACS Applied Materials & Size Matter?.	4.0	18
481	Template-Free Synthesis of Chemically Asymmetric Silica Nanotubes for Selective Cargo Loading and Sustained Drug Release. Chemistry of Materials, 2019, 31, 4291-4298.	3.2	18
482	Interfacial Assembly of Metal–Phenolic Networks for Hair Dyeing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 29826-29834.	4.0	18
483	Sonoâ€Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. Angewandte Chemie - International Edition, 2021, 60, 21529-21535.	7.2	18
484	Siteâ€Selective Coordination Assembly of Dynamic Metalâ€Phenolic Networks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
485	Title is missing!. Australian Journal of Chemistry, 2001, 54, 349.	0.5	17
486	Surface Interactions during Polyelectrolyte Multilayer Build-Up. 2. The Effect of Ionic Strength on the Structure of Preformed Multilayers. Langmuir, 2006, 22, 4153-4157.	1.6	17

#	Article	IF	CITATIONS
487	Low-Fouling, Biospecific Films Prepared by the Continuous Assembly of Polymers. Biomacromolecules, 2013, 14, 2477-2483.	2.6	17
488	Convective polymer assembly for the deposition of nanostructures and polymer thin films on immobilized particles. Nanoscale, 2014, 6, 13416-13420.	2.8	17
489	Codelivery of NOD2 and TLR9 Ligands via Nanoengineered Protein Antigen Particles for Improving and Tuning Immune Responses. Advanced Functional Materials, 2016, 26, 7526-7536.	7.8	17
490	Synthesis of Chemically Asymmetric Silica Nanobottles and Their Application for Cargo Loading and as Nanoreactors and Nanomotors. Angewandte Chemie, 2016, 128, 14953-14957.	1.6	17
491	Polyphenolâ€Mediated Assembly of Proteins for Engineering Functional Materials. Angewandte Chemie, 2020, 132, 15748-15755.	1.6	17
492	Bioresponsive Polyphenol-Based Nanoparticles as Thrombolytic Drug Carriers. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 3740-3751.	4.0	17
493	Two-dimensional diffusion of amphiphiles in phospholipid monolayers at the air-water interface. Biophysical Journal, 1993, 65, 2493-2503.	0.2	16
494	Characterization of the Growth of Polyelectrolyte Multilayers Formed at Interfaces between Aqueous Phases and Thermotropic Liquid Crystals. Langmuir, 2008, 24, 5534-5542.	1.6	16
495	Assembly of Freeâ€Standing Polypeptide Films via the Synergistic Combination of Hyperbranched Macroinitiators, the Graftingâ€From Approach, and Crossâ€Chain Termination. Advanced Materials, 2013, 25, 4619-4624.	11.1	16
496	Probing transcription factor binding activity and downstream gene silencing in living cells with a DNA nanoswitch. Nanoscale, 2018, 10, 2034-2044.	2.8	16
497	RNAi therapeutics: an antiviral strategy for human infections. Current Opinion in Pharmacology, 2020, 54, 121-129.	1.7	16
498	Programmable Phototaxis of Metal–Phenolic Particle Microswimmers. Advanced Materials, 2021, 33, e2006177.	11.1	16
499	3D Ordered Macroporous Materials. , 0, , 465-493.		15
500	Endocytic Capsule Sensors for Probing Cellular Internalization. Advanced Healthcare Materials, 2014, 3, 1551-1554.	3.9	15
501	Synthesis of Discrete Alkyl‧ilica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes. Angewandte Chemie, 2016, 128, 8515-8520.	1.6	15
502	Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting Cells. ACS Applied Materials & D. Interfaces, 2017, 9, 6444-6452.	4.0	15
503	The resilience of carbonic anhydrase enzyme for membrane-based carbon capture applications. International Journal of Greenhouse Gas Control, 2017, 62, 122-129.	2.3	15
504	A few clarifications on MIRIBEL. Nature Nanotechnology, 2020, 15, 2-3.	15.6	15

#	Article	IF	CITATIONS
505	Immobilized Particle Imaging for Quantification of Nano- and Microparticles. Langmuir, 2016, 32, 3532-3540.	1.6	14
506	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angewandte Chemie - International Edition, 2021, 60, 20225-20230.	7.2	14
507	Investigation of immuno-reactions in a flow-injection system using surface plasmon resonance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 103, 147-157.	2.3	13
508	Compositional Engineering of Polyelectrolyte Blend Capsules. Macromolecules, 2007, 40, 7581-7589.	2.2	13
509	Design of Degradable Click Delivery Systems. Macromolecular Rapid Communications, 2013, 34, 894-902.	2.0	13
510	Generalizable Strategy for Engineering Protein Particles with pH-Triggered Disassembly and Recoverable Protein Functionality. ACS Macro Letters, 2015, 4, 160-164.	2.3	13
511	Engineering Polymer Hydrogel Nanoparticles for Lymph Nodeâ€Targeted Delivery. Angewandte Chemie, 2016, 128, 1356-1361.	1.6	13
512	Dynamic Electrophoretic Assembly of Metal–Phenolic Films: Accelerated Formation and Cytocompatible Detachment. Chemistry of Materials, 2020, 32, 7746-7753.	3.2	13
513	A quartz crystal microbalance study of the removal of solid organic soils from a hard surface in aqueous surfactant solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146, 185-197.	2.3	12
514	Exploiting the Directionality of DNA: Controlled Shrinkage of Engineered Oligonucleotide Capsules. Angewandte Chemie, 2007, 119, 2731-2734.	1.6	12
515	Fabrication of ultra-thin polyrotaxane-based films via solid-state continuous assembly of polymers. Chemical Communications, 2015, 51, 2025-2028.	2.2	12
516	Robust Chemistry: The Importance of Data and Methods Sharing. Angewandte Chemie - International Edition, 2018, 57, 1122-1123.	7.2	12
517	Protocols for Reproducible, Increased-Scale Synthesis of Engineered Particlesâ€"Bridging the "Upscaling Gap― Chemistry of Materials, 2021, 33, 1099-1115.	3.2	12
518	Synthesis of Customizable Macromolecular Conjugates as Building Blocks for Engineering Metalâ€"Phenolic Network Capsules with Tailorable Properties. Chemistry of Materials, 2021, 33, 8477-8488.	3.2	12
519	Transforming the Chemical Structure and Bioâ€Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells. Advanced Materials, 2022, 34, e2107964.	11.1	12
520	<i>Chemistry of Materials</i> i>—20 Years On and On the Rise. Chemistry of Materials, 2008, 20, 1-2.	3.2	11
521	Thin Multilayer Films and Microcapsules Containing DNA Quadruplex Motifs. Small, 2011, 7, 101-111.	5.2	11
522	Continuous assembly of polymers via solid phase reactions. Chemical Science, 2014, 5, 3374-3380.	3.7	11

#	Article	IF	CITATIONS
523	Interactions between circulating nanoengineered polymer particles and extracellular matrix components in vitro. Biomaterials Science, 2017, 5, 267-273.	2.6	11
524	Expanding the Toolbox of Metal–Phenolic Networks via Enzymeâ€Mediated Assembly. Angewandte Chemie, 2020, 132, 1728-1734.	1.6	11
525	Modulating the Selectivity and Stealth Properties of Ellipsoidal Polymersomes through a Multivalent Peptide Ligand Display. Advanced Healthcare Materials, 2020, 9, e2000261.	3.9	11
526	Origins of Structural Elasticity in Metal–Phenolic Networks Probed by Super-Resolution Microscopy and Multiscale Simulations. ACS Nano, 2022, 16, 98-110.	7.3	11
527	Acousto-optic surface-plasmon resonance measurements of thin films on gold. Journal of Applied Physics, 1998, 83, 1023-1028.	1.1	10
528	Lysine functionalised amyloid fibrils: the design and assembly of a TTR1-based peptide. Soft Matter, 2013, 9, 3315.	1.2	10
529	Achieving HIV-1 Control through RNA-Directed Gene Regulation. Genes, 2016, 7, 119.	1.0	10
530	Advancing Research Using Action Cameras. Chemistry of Materials, 2016, 28, 8441-8442.	3.2	10
531	Modular Assembly of Host–Guest Metal–Phenolic Networks Using Macrocyclic Building Blocks. Angewandte Chemie, 2020, 132, 281-286.	1.6	10
532	Nanoengineering multifunctional hybrid interfaces using adhesive glycogen nanoparticles. Journal of Materials Chemistry B, 2020, 8, 4851-4858.	2.9	10
533	Assembly of Metal–Phenolic Networks on Waterâ€Soluble Substrates in Nonaqueous Media. Advanced Functional Materials, 2022, 32, .	7.8	10
534	Unravelling "off-target―effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells. Nanoscale, 2015, 7, 6261-6270.	2.8	9
535	Formation of Polyrotaxane Particles via Template Assembly. Biomacromolecules, 2017, 18, 2118-2127.	2.6	9
536	Quantitatively Tracking Bio–Nano Interactions of Metal–Phenolic Nanocapsules by Mass Cytometry. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 35494-35505.	4.0	9
537	Protein precoating modulates biomolecular coronas and nanocapsule–immune cell interactions in human blood. Journal of Materials Chemistry B, 2022, 10, 7607-7621.	2.9	9
538	Lateral diffusion of amphiphiles in fatty acid monolayers at the air-water interface: a steady-state and time-resolved fluorescence quenching study. Langmuir, 1993, 9, 3142-3148.	1.6	8
539	Behavior of a pyrene-labeled phospholipid in monolayers of dimyristoyl-Lalphaphosphatidylcholine at the gas-water interface: a fluorescence quenching study. The Journal of Physical Chemistry, 1993, 97, 7364-7370.	2.9	8
540	Probing the Dynamic Nature of DNA Multilayer Films Using Förster Resonance Energy Transfer. Langmuir, 2012, 28, 12527-12535.	1.6	8

#	Article	IF	CITATIONS
541	Tuning Particle Biodegradation through Polymer–Peptide Blend Composition. Biomacromolecules, 2014, 15, 4429-4438.	2.6	8
542	Oxidationâ€Mediated Kinetic Strategies for Engineering Metal–Phenolic Networks. Angewandte Chemie, 2019, 131, 12693-12698.	1.6	8
543	Protein Component of Oyster Glycogen Nanoparticles: An Anchor Point for Functionalization. ACS Applied Materials & District Samp; Interfaces, 2020, 12, 38976-38988.	4.0	8
544	Pharmacokinetics and biodistribution of supraparticle-delivered neurotrophin 3 in the guinea pig cochlea. Journal of Controlled Release, 2022, 342, 295-307.	4.8	8
545	Stabilization of Hydrogen-Bonded Poly(N-isopropylacrylamide) Multilayers by a Dual Electrostatic/Hydrogen Bonding Copolymer. Australian Journal of Chemistry, 2005, 58, 442.	0.5	7
546	Multivalent Directed Assembly of Colloidal Particles. Angewandte Chemie - International Edition, 2013, 52, 3314-3316.	7.2	7
547	Preparation of Nano―and Microcapsules by Electrophoretic Polymer Assembly. Angewandte Chemie, 2013, 125, 6583-6586.	1.6	7
548	Fabrication of nanopatterned polymeric microparticles using a diatom as a sacrificial template. RSC Advances, 2014, 4, 44418-44422.	1.7	7
549	Fundamental Studies of Hybrid Poly(2-(diisopropylamino)ethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 427 2784-2792.	Td (meth	acrylate)/Po 7
550	Lateral diffusion study of amphiphiles in air-water monolayer films of polymerizable surfactants. Macromolecules, 1994, 27, 77-86.	2.2	6
551	Lateral diffusion of lipoidal spectroscopic probes in Langmuir-Blodgett films at the solid/liquid interface. Langmuir, 1994, 10, 3373-3376.	1.6	6
552	Particle-mediated delivery of frataxin plasmid to a human sensory neuronal model of Friedreich's ataxia. Biomaterials Science, 2020, 8, 2398-2403.	2.6	6
553	Microemulsion-Assisted Templating of Metal-Stabilized Poly(ethylene glycol) Nanoparticles. Biomacromolecules, 2021, 22, 612-619.	2.6	6
554	Assembly of Electrically Functional Microstructures from Colloidal Particles. , 0, , 437-464.		5
555	Fabrication of Chiral Stationary Phases via Continuous Assembly of Polymers for Resolution of Enantiomers by Liquid Chromatography. Macromolecular Materials and Engineering, 2014, 299, 1285-1291.	1.7	5
556	A radiolabeled drug tracing method to study neurotrophin-3 retention and distribution in the cochlea after nano-based local delivery. MethodsX, 2020, 7, 101078.	0.7	5
557	Engineered Coatings via the Assembly of Aminoâ€Quinone Networks. Angewandte Chemie, 2021, 133, 2376-2384.	1.6	5
558	Exploiting Supramolecular Dynamics in Metal–Phenolic Networks to Generate Metal–Oxide and Metal–Carbon Networks. Angewandte Chemie, 2021, 133, 14707-14715.	1.6	5

#	Article	IF	CITATIONS
559	NFAT signaling in human mesenchymal stromal cells affects extracellular matrix remodeling and antifungal immune responses. IScience, 2021, 24, 102683.	1.9	5
560	Sonoâ€Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. Angewandte Chemie, 2021, 133, 21699-21705.	1.6	5
561	Semiconductor Nanoparticles. , 0, , 52-95.		4
562	Colloidal Crystals: Recent Developments and Niche Applications. , 0, , 284-316.		4
563	Programmed Degradation of DNA Multilayer Films. Small, 2014, 10, 2902-2909.	5.2	4
564	Membranes: Chlorine Resistant Glutaraldehyde Crosslinked Polyelectrolyte Multilayer Membranes for Desalination (Adv. Mater. 17/2015). Advanced Materials, 2015, 27, 2811-2811.	11.1	4
565	Robuste Chemie: die Bedeutung des Teilens von Daten und Methoden. Angewandte Chemie, 2018, 130, 1136-1137.	1.6	4
566	Best Practices for New Polymers and Nanoparticulate Systems. Chemistry of Materials, 2018, 30, 6587-6588.	3.2	4
567	Distribution of Particles in Human Stem Cell-Derived 3D Neuronal Cell Models: Effect of Particle Size, Charge, and Density. Biomacromolecules, 2020, 21, 3186-3196.	2.6	4
568	Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy. Nanoscale, 2020, 12, 15402-15413.	2.8	4
569	Bio-nano Science: Better Metrics Would Accelerate Progress. Chemistry of Materials, 2021, 33, 7613-7619.	3.2	4
570	Luminescent Metal–Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie, 0, , .	1.6	4
571	Template-Assisted Antibody Assembly: A Versatile Approach for Engineering Functional Antibody Nanoparticles. Chemistry of Materials, 2022, 34, 3694-3704.	3.2	4
572	Latex Particles., 0,, 1-51.		3
573	Miniemulsions for the Convenient Synthesis of Organic and Inorganic Nanoparticles and"Single Molecule―Applications in Materials Chemistry. , 0, , 175-215.		3
574	Surface-Directed Colloid Patterning: Selective Deposition via Electrostatic and Secondary Interactions., 0,, 317-341.		3
575	Towards 3D metal-dielectric photonic crystal. Optical characterization. Molecular Crystals and Liquid Crystals, 2004, 415, 211-219.	0.4	3
576	Engineered Bacterially Expressed Polypeptides: Assembly into Polymer Particles with Tailored Degradation Profiles. Angewandte Chemie - International Edition, 2012, 51, 460-464.	7.2	3

#	Article	IF	Citations
577	Biomimetics: Metal-Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells (Adv.) Tj ETQq1	1 0.78431 11.1	4 _g gBT /Ove
578	Hollow Capsule Processing through Colloidal Templating and Self-Assembly. , 2000, 6, 413.		3
579	Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes., 1998, 37, 2201.		3
580	Siteâ€Selective Coordination Assembly of Dynamic Metal–Phenolic Networks. Angewandte Chemie, 0, , .	1.6	3
581	Monolayer Protected Clusters of Gold and Silver. , 0, , 96-119.		2
582	Sonochemical Synthesis of Inorganic and Organic Colloids. , 0, , 120-149.		2
583	Nanoscale Particle Modification via Sequential Electrostatic Assembly. , 0, , 246-283.		2
584	Colloids for Encoding Chemical Libraries: Applications in Biological Screening., 0,, 507-560.		2
585	Drug Delivery: Bypassing Multidrug Resistance in Cancer Cells with Biodegradable Polymer Capsules (Adv. Mater. 47/2010). Advanced Materials, 2010, 22, 5324-5324.	11.1	2
586	Reaction Vessels Assembled by the Sequential Adsorption of Polymers. Advances in Polymer Science, 2010, , 155-179.	0.4	2
587	Drug Delivery: Templated Assembly of pH‣abile Polymerâ€Drug Particles for Intracellular Drug Delivery (Adv. Funct. Mater. 22/2012). Advanced Functional Materials, 2012, 22, 4844-4844.	7.8	2
588	Preface to the Chemistry of Materials Special Issue: Materials for Biological Applications. Chemistry of Materials, 2012, 24, 727-727.	3.2	2
589	To bind or not to bind. Nature, 2013, 502, 313-314.	13.7	2
590	Hydrogels: Advanced Subcompartmentalized Microreactors: Polymer Hydrogel Carriers Encapsulating Polymer Capsules and Liposomes (Small 21/2013). Small, 2013, 9, 3572-3572.	5.2	2
591	Particle Targeting: Particle Targeting in Complex Biological Media (Adv. Healthcare Mater. 1/2018). Advanced Healthcare Materials, 2018, 7, 1870004.	3.9	2
592	Bioconjugate Materials in Vaccines and Immunotherapies. Bioconjugate Chemistry, 2018, 29, 571-571.	1.8	2
593	Catalytically Active Copper Phosphate–Dextran Sulfate Microparticle Coatings for Bioanalyte Sensing. Particle and Particle Systems Characterization, 2020, 37, 2000210.	1,2	2
594	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angewandte Chemie, 2021, 133, 20387-20392.	1.6	2

#	Article	IF	CITATIONS
595	Colloidal Nanoreactors and Nanocontainers. , 0, , 150-174.		1
596	Metal and Semiconductor Nanoparticle Modification via Chemical Reactions. , 0, , 216-245.		1
597	Nanoparticle Organization at the Air-Water Interface and in Langmuir-Blodgett Films. , 0, , 369-397.		1
598	Polyelectrolyte Microcapsules as Biomimetic Models., 0,, 561-580.		1
599	Preface to the Chemistry of Materials Special Issue: Synthetic and Mechanistic Advances in Nanocrystal Growth. Chemistry of Materials, 2013, 25, 1153-1154.	3.2	1
600	Engineering particles for therapeutic delivery: Prospects and challenges. Proceedings of the Royal Society of Victoria, 2013, 125, 77.	0.3	1
601	Hydrogel Particles: Super-Soft Hydrogel Particles with Tunable Elasticity in a Microfluidic Blood Capillary Model (Adv. Mater. 43/2014). Advanced Materials, 2014, 26, 7416-7416.	11.1	1
602	Titelbild: Engineering Multifunctional Capsules through the Assembly of Metal-Phenolic Networks (Angew. Chem. 22/2014). Angewandte Chemie, 2014, 126, 5579-5579.	1.6	1
603	Metal–Organic Frameworks: Biomimetic Replication of Microscopic Metal–Organic Framework Patterns Using Printed Protein Patterns (Adv. Mater. 45/2015). Advanced Materials, 2015, 27, 7483-7483.	11.1	1
604	Tutorials and Articles on Best Practices. ACS Nano, 2020, 14, 10751-10753.	7.3	1
605	Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs. Nanoscale, 2022, 14, 3452-3466.	2.8	1
606	Reanalysis: the forgotten sibling of reproducibility and replicability. Nature Reviews Methods Primers, 2022, 2, .	11.8	1
607	Laser Scanning Confocal Microscopic Analysis of Metakaolin-Based Geopolymers. , 0, , 273-282.		1
608	Novel Fluorescent Labels Prepared by Layer-by-Layer Assembly on Colloids for Biodetection Systems. Materials Research Society Symposia Proceedings, 2001, 667, 1.	0.1	0
609	Electrostatically Assembled Fluorescent Thin Films of Rare-Earth-Doped Lanthanum Phosphate Nanoparticles ChemInform, 2003, 34, no.	0.1	0
610	Evolving Strategies of Nanomaterials Design. , 0, , 342-368.		0
611	Layer-By-Layer Self-Assembly of Metal Nanoparticles on Planar Substrates: Fabrication and Properties. , 0, , 398-436.		0
612	Semiconductor Quantum Dots as Multicolor and Ultrasensitive Biological Labels., 0,, 494-506.		0

#	Article	IF	CITATIONS
613	Controlled Degradation of Polyrotaxane Multilayers: Construction and Degradation of Polyrotaxane Multilayers (Adv. Mater. 27/2011). Advanced Materials, 2011, 23, 2996-2996.	11.1	o
614	"Smart―Capsules for Drug Release: Charge-Shifting Click Capsules with Dual-Responsive Cargo Release Mechanisms (Adv. Mater. 36/2011). Advanced Materials, 2011, 23, H210-H210.	11.1	О
615	Polymer Films: (Super)hydrophobic and Multilayered Amphiphilic Films Prepared by Continuous Assembly of Polymers (Adv. Funct. Mater. 41/2013). Advanced Functional Materials, 2013, 23, 5216-5216.	7.8	O
616	Polymerization: Assembly of Free-Standing Polypeptide Films via the Synergistic Combination of Hyperbranched Macroinitiators, the Grafting-From Approach, and Cross-Chain Termination (Adv.) Tj ETQq0 0 0 r	gBTL‡ Q ver	locko 10 Tf 50 6
617	Biomedical Applications: Endocytic pH-Triggered Degradation of Nanoengineered Multilayer Capsules (Adv. Mater. 12/2014). Advanced Materials, 2014, 26, 1947-1947.	11.1	O
618	Nanoscale probing and imaging of HIV-1 RNA in cells with a chimeric LNA–DNA sensor. Nanoscale, 2022,	2.8	0