

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2489230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LncRNA-Disease Associations Prediction Based on Neural Network-Based Matrix Factorization. IEEE Access, 2023, 11, 59071-59080.	2.6	2
2	Innate immunity in latent autoimmune diabetes in adults. Diabetes/Metabolism Research and Reviews, 2022, 38, e3480.	1.7	7
3	MBD2 acts as a repressor to maintain the homeostasis of the Th1 program in type 1 diabetes by regulating the STAT1-IFN-Î ³ axis. Cell Death and Differentiation, 2022, 29, 218-229.	5.0	18
4	Human cleaving embryos enable efficient mitochondrial base-editing with DdCBE. Cell Discovery, 2022, 8, 7.	3.1	19
5	Editorial: Immunopathology of Type 1 Diabetes. Frontiers in Immunology, 2022, 13, 852963.	2.2	0
6	Kai-Xin-San Inhibits Tau Pathology and Neuronal Apoptosis in Aged SAMP8 Mice. Molecular Neurobiology, 2022, 59, 3294-3309.	1.9	13
7	Obesity aggravates contact hypersensitivity reaction in mice. Contact Dermatitis, 2022, 87, 28-39.	0.8	3
8	Reliability of Non-Contact Infrared Thermometers for Fever Screening Under COVID-19. Risk Management and Healthcare Policy, 2022, Volume 15, 447-456.	1.2	10
9	Long-term hyperglycemia aggravates α-synuclein aggregation and dopaminergic neuronal loss in aÂParkinson's disease mouse model. Translational Neurodegeneration, 2022, 11, 14.	3.6	16
10	Ferroptosis in Parkinson's disease: glia–neuron crosstalk. Trends in Molecular Medicine, 2022, 28, 258-269.	3.5	77
11	Development and Validation of a Screening Questionnaire of COPD from a Large Epidemiological Study in China. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2022, 19, 118-124.	0.7	1
12	lgM-associated gut bacteria in obesity and type 2 diabetes in C57BL/6 mice and humans. Diabetologia, 2022, 65, 1398-1411.	2.9	4
13	Toll-like receptor 9 deficiency induces osteoclastic bone loss via gut microbiota-associated systemic chronic inflammation. Bone Research, 2022, 10, .	5.4	16
14	Carbonyl Posttranslational Modification Associated With Early-Onset Type 1 Diabetes Autoimmunity. Diabetes, 2022, 71, 1979-1993.	0.3	10
15	DMFMDA: Prediction of Microbe-Disease Associations Based on Deep Matrix Factorization Using Bayesian Personalized Ranking. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1763-1772.	1.9	21
16	TLR9 Deficiency in B Cells Promotes Immune Tolerance via Interleukin-10 in a Type 1 Diabetes Mouse Model. Diabetes, 2021, 70, 504-515.	0.3	8
17	Differentiating MHC-Dependent and -Independent Mechanisms of Lymph Node Stromal Cell Regulation of Proinsulin-Specific CD8+ T Cells in Type 1 Diabetes. Diabetes, 2021, 70, 529-537.	0.3	0
18	Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. Cellular and Molecular Immunology, 2021, 18, 328-338.	4.8	13

#	Article	IF	CITATIONS
19	Procr-expressing granulosa cells are highly proliferative and are important for follicle development. IScience, 2021, 24, 102065.	1.9	8
20	Endothelial Wnts control mammary epithelial patterning via fibroblast signaling. Cell Reports, 2021, 34, 108897.	2.9	15
21	Inflammasomes and Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 686956.	2.2	7
22	An Ensemble Matrix Completion Model for Predicting Potential Drugs Against SARS-CoV-2. Frontiers in Microbiology, 2021, 12, 694534.	1.5	2
23	IL-10 Deficiency Accelerates Type 1 Diabetes Development via Modulation of Innate and Adaptive Immune Cells and Gut Microbiota in BDC2.5 NOD Mice. Frontiers in Immunology, 2021, 12, 702955.	2.2	13
24	The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging. Cell Death and Disease, 2021, 12, 744.	2.7	39
25	Circadian Rhythm Modulation of Microbes During Health and Infection. Frontiers in Microbiology, 2021, 12, 721004.	1.5	10
26	MMS22L Expression as a Predictive Biomarker for the Efficacy of Neoadjuvant Chemoradiotherapy in Oesophageal Squamous Cell Carcinoma. Frontiers in Oncology, 2021, 11, 711642.	1.3	2
27	Mental Health of Parents and Preschool-Aged Children During the COVID-19 Pandemic: The Mediating Role of Harsh Parenting and Child Sleep Disturbances. Frontiers in Psychiatry, 2021, 12, 746330.	1.3	8
28	Novel LAT Pathogenic Variants in a POI Family and Its Role in the Ovary. Frontiers in Genetics, 2021, 12, 764160.	1.1	1
29	Emerging Trends and Hot Spots of Electrical Impedance Tomography Applications in Clinical Lung Monitoring. Frontiers in Medicine, 2021, 8, 813640.	1.2	8
30	Favorable Outcomes of Anticoagulation With Unfractioned Heparin in Sepsis-Induced Coagulopathy: A Retrospective Analysis of MIMIC-III Database. Frontiers in Medicine, 2021, 8, 773339.	1.2	3
31	Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduction and Targeted Therapy, 2021, 6, 422.	7.1	57
32	Dendritic cells license regulatory B cells to produce IL-10 and mediate suppression of antigen-specific CD8 T cells. Cellular and Molecular Immunology, 2020, 17, 843-855.	4.8	56
33	Management of Bivalirudin Anticoagulation Therapy for Extracorporeal Membrane Oxygenation in Heparin-Induced Thrombocytopenia: A Case Report and a Systematic Review. Frontiers in Pharmacology, 2020, 11, 565013.	1.6	7
34	Crosstalk between circadian rhythms and the microbiota. Immunology, 2020, 161, 278-290.	2.0	26
35	Prevalence and risk factors of small airway dysfunction, and association with smoking, in China: findings from a national cross-sectional study. Lancet Respiratory Medicine,the, 2020, 8, 1081-1093.	5.2	129
36	Targeting Mouse Double Minute 2: Current Concepts in DNA Damage Repair and Therapeutic Approaches in Cancer. Frontiers in Pharmacology, 2020, 11, 631.	1.6	15

#	Article	IF	CITATIONS
37	A predictive CD8+ T cell phenotype for T1DM progression. Nature Reviews Endocrinology, 2020, 16, 198-199.	4.3	7
38	Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression. Computational Biology and Chemistry, 2020, 85, 107200.	1,1	63
39	The Efficacy and Safety of the mTOR Signaling Pathway Activator, MHY1485, for in vitro Activation of Human Ovarian Tissue. Frontiers in Genetics, 2020, 11, 603683.	1.1	5
40	Mouse Models of Autoimmune Diabetes: The Nonobese Diabetic (NOD) Mouse. Methods in Molecular Biology, 2020, 2128, 87-92.	0.4	20
41	Upregulated LncZBTB39 in pre-eclampsia and its effects on trophoblast invasion and migration via antagonizing the inhibition of miR-210 on THSD7A expression. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2020, 248, 164-171.	0.5	7
42	Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight, 2020, 5, .	2.3	53
43	Inferring Latent Disease-IncRNA Associations by Faster Matrix Completion on a Heterogeneous Network. Frontiers in Genetics, 2019, 10, 769.	1.1	14
44	Phenotypically distinct anti-insulin B cells repopulate pancreatic islets after anti-CD20 treatment in NOD mice. Diabetologia, 2019, 62, 2052-2065.	2.9	14
45	Ammonia-Induced Brain Edema Requires Macrophage and T Cell Expression of Toll-Like Receptor 9. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 609-623.	2.3	11
46	Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet, The, 2019, 394, 407-418.	6.3	377
47	Saxagliptin alters bile acid profiles and yields metabolic benefits in drugâ€naÃ⁻ve overweight or obese type 2 diabetes patient. Journal of Diabetes, 2019, 11, 982-992.	0.8	13
48	Randomized Trial of Verubecestat for Prodromal Alzheimer's Disease. New England Journal of Medicine, 2019, 380, 1408-1420.	13.9	397
49	Altered Gut Microbiota Activate and Expand Insulin B15-23–Reactive CD8+ T Cells. Diabetes, 2019, 68, 1002-1013.	0.3	28
50	Norovirus Changes Susceptibility to Type 1 Diabetes by Altering Intestinal Microbiota and Immune Cell Functions. Frontiers in Immunology, 2019, 10, 2654.	2.2	35
51	A role for focal adhesion kinase in facilitating the contractile responses of murine gastric fundus smooth muscles. Journal of Physiology, 2018, 596, 2131-2146.	1.3	14
52	Acid-Suppressive Drug Use During Pregnancy and the Risk of Childhood Asthma: A Meta-analysis. Pediatrics, 2018, 141, .	1.0	41
53	B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model. Diabetologia, 2018, 61, 1397-1410.	2.9	18
54	Cyclophosphamide-modified murine peritoneal macrophages induce CD4+ T contrasuppressor cells that protect contact sensitivity T effector cells from suppression. Pharmacological Reports, 2018, 70, 796-803.	1.5	1

#	Article	IF	CITATIONS
55	Evaluation of different mucosal microbiota leads to gut microbiota-based prediction of type 1 diabetes in NOD mice. Scientific Reports, 2018, 8, 15451.	1.6	59
56	Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Human Vaccines and Immunotherapeutics, 2018, 14, 1-17.	1.4	11
57	TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells. Journal of Autoimmunity, 2018, 93, 57-65.	3.0	58
58	Regulation of contact sensitivity in nonâ€obese diabetic (NOD) mice by innate immunity. Contact Dermatitis, 2018, 79, 197-207.	0.8	2
59	Autophagy is required for human umbilical cord mesenchymal stem cells to improve spatial working memory in APP/PS1 transgenic mouse model. Stem Cell Research and Therapy, 2018, 9, 9.	2.4	20
60	Toll-like receptor 9 negatively regulates pancreatic islet beta cell growth and function in a mouse model of type 1 diabetes. Diabetologia, 2018, 61, 2333-2343.	2.9	24
61	Relevance of placental type I interferon beta regulation for pregnancy success. Cellular and Molecular Immunology, 2018, 15, 1010-1026.	4.8	25
62	Loss of CXCR3 expression on memory B cells in individuals with long-standing type 1 diabetes. Diabetologia, 2018, 61, 1794-1803.	2.9	12
63	Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice. JCl Insight, 2018, 3, .	2.3	9
64	Broad spectrum antibiotic enrofloxacin modulates contact sensitivity through gut microbiota in a murine model. Journal of Allergy and Clinical Immunology, 2017, 140, 121-133.e3.	1.5	45
65	Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure. Molecular and Cellular Biochemistry, 2017, 428, 203-212.	1.4	17
66	The Bifunctional Enzyme SpoT Is Involved in the Clarithromycin Tolerance of Helicobacter pylori by Upregulating the Transporters HP0939, HP1017, HP0497, and HP0471. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	17
67	Autophagy is involved in mouse kidney development and podocyte differentiation regulated by Notch signalling. Journal of Cellular and Molecular Medicine, 2017, 21, 1315-1328.	1.6	24
68	Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacological Research, 2017, 119, 219-226.	3.1	44
69	Activating transcription factor 3 represses cigarette smoke-induced IL6 and IL8 expression via suppressing NF-I ^g B activation. Toxicology Letters, 2017, 270, 17-24.	0.4	32
70	Dietary short-chain fatty acids protect against type 1 diabetes. Nature Immunology, 2017, 18, 484-486.	7.0	45
71	Nucleotide-binding oligomerization domain-containing protein 2 (Nod2) modulates T1DM susceptibility by gut microbiota. Journal of Autoimmunity, 2017, 82, 85-95.	3.0	36
72	Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. Journal of Nutrition, 2017, 1468S-1475S.	1.3	268

#	Article	IF	CITATIONS
73	Activating Transcription Factor 3 Is Essential for Cigarette Smoke-Induced Mucin Expression via Interaction with Activator Protein-1. American Journal of Pathology, 2017, 187, 280-291.	1.9	5
74	Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10443-10448.	3.3	77
75	Etidronate rescues cognitive deficits through improving synaptic transmission and suppressing apoptosis in 2â€vessel occlusion model rats. Journal of Neurochemistry, 2017, 140, 476-484.	2.1	21
76	Integration of Novel Materials and Advanced Genomic Technologies into New Vaccine Design. Current Topics in Medicinal Chemistry, 2017, 17, 2286-2301.	1.0	6
77	Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+T Cells. Diabetes, 2016, 65, 1679-1689.	0.3	9
78	The Gut Microbiome in the NOD Mouse. Methods in Molecular Biology, 2016, 1433, 169-177.	0.4	3
79	Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice. Journal of Autoimmunity, 2016, 72, 47-56.	3.0	57
80	Peripheral Proinsulin Expression Controls Low-Avidity Proinsulin-Reactive CD8 T Cells in Type 1 Diabetes. Diabetes, 2016, 65, 3429-3439.	0.3	19
81	Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice. Journal of Experimental Medicine, 2016, 213, 2129-2146.	4.2	131
82	Epicutaneous immunization with ovalbumin and CpG induces TH1/TH17 cytokines, which regulate IgE and IgG2a production. Journal of Allergy and Clinical Immunology, 2016, 138, 262-273.e6.	1.5	21
83	Neuroprotective Effects of Etidronate and 2,3,3-Trisphosphonate Against Glutamate-Induced Toxicity in PC12 Cells. Neurochemical Research, 2016, 41, 844-854.	1.6	23
84	The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes. Journal of Autoimmunity, 2016, 71, 26-34.	3.0	60
85	Microneedle delivery of autoantigen for immunotherapy in type 1 diabetes. Journal of Controlled Release, 2016, 223, 178-187.	4.8	32
86	Altered Peripheral B-Lymphocyte Subsets in Type 1 Diabetes and Latent Autoimmune Diabetes in Adults. Diabetes Care, 2016, 39, 434-440.	4.3	90
87	The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. Journal of Autoimmunity, 2016, 66, 76-88.	3.0	227
88	A novel "humanized mouse―model for autoimmune hepatitis and the association of gut microbiota with liver inflammation. Hepatology, 2015, 62, 1536-1550.	3.6	97
89	The gut microbiota and Type 1 Diabetes. Clinical Immunology, 2015, 159, 143-153.	1.4	142
90	The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 55-65.	2.6	207

#	Article	IF	CITATIONS
91	Toll-Like Receptor 3 Is Critical for Coxsackievirus B4-Induced Type 1 Diabetes in Female NOD Mice. Endocrinology, 2015, 156, 453-461.	1.4	40
92	HDAC is essential for epigenetic regulation of Thy-1 gene expression during LPS/TLR4-mediated proliferation of lung fibroblasts. Laboratory Investigation, 2015, 95, 1105-1116.	1.7	18
93	Type 1 diabetes and gut microbiota: Friend or foe?. Pharmacological Research, 2015, 98, 9-15.	3.1	48
94	High-mobility group box 1 accelerates lipopolysaccharide-induced lung fibroblast proliferation in vitro: involvement of the NF-κB signaling pathway. Laboratory Investigation, 2015, 95, 635-647.	1.7	34
95	Maternal Antibiotic Treatment Protects Offspring from Diabetes Development in Nonobese Diabetic Mice by Generation of Tolerogenic APCs. Journal of Immunology, 2015, 195, 4176-4184.	0.4	89
96	Chrysin suppresses human CD14+ monocyte-derived dendritic cells and ameliorates experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2015, 288, 13-20.	1.1	34
97	G protein-coupled estrogen receptor 1 (GPER 1) mediates estrogen-induced, proliferation of leiomyoma cells. Gynecological Endocrinology, 2015, 31, 894-898.	0.7	7
98	NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11318-11323.	3.3	109
99	Interleukin-10+ Regulatory B Cells Arise Within Antigen-Experienced CD40+ B Cells to Maintain Tolerance to Islet Autoantigens. Diabetes, 2015, 64, 158-171.	0.3	80
100	Evaluation of lymph node metastasis in lung cancer: who is the chief justice?. Journal of Thoracic Disease, 2015, 7, S231-7.	0.6	8
101	Melamine induces autophagy in mesangial cells via enhancing ROS level. Toxicology Mechanisms and Methods, 2015, 25, 581-7.	1.3	3
102	TNF-α-308G/A Polymorphism Contributes to Obstructive Sleep Apnea Syndrome Risk: Evidence Based on 10 Case-Control Studies. PLoS ONE, 2014, 9, e106183.	1.1	15
103	IRAK-M Deficiency Promotes the Development of Type 1 Diabetes in NOD Mice. Diabetes, 2014, 63, 2761-2775.	0.3	22
104	Toll-Like Receptor Activation in Immunity vs. Tolerance in Autoimmune Diabetes. Frontiers in Immunology, 2014, 5, 119.	2.2	19
105	A Humanized Mouse Model of Autoimmune Insulitis. Diabetes, 2014, 63, 1712-1724.	0.3	37
106	Epicutaneous Immunization with TNP-Ig and Zymosan Induces TCRαβ+ CD4+ Contrasuppressor Cells That Reverse Skin-Induced Suppression via IL-17A. International Archives of Allergy and Immunology, 2014, 164, 122-136.	0.9	7
107	Long term effect of gut microbiota transfer on diabetes development. Journal of Autoimmunity, 2014, 53, 85-94.	3.0	143
108	MBD2 regulates TH17 differentiation and experimental autoimmune encephalomyelitis by controlling the homeostasis of T-bet/Hlx axis. Journal of Autoimmunity, 2014, 53, 95-104.	3.0	39

#	Article	IF	CITATIONS
109	Combination Treatment With Anti-CD20 and Oral Anti-CD3 Prevents and Reverses Autoimmune Diabetes. Diabetes, 2013, 62, 2849-2858.	0.3	43
110	Immunotherapy for T1DM—targeting innate immunity. Nature Reviews Endocrinology, 2013, 9, 384-385.	4.3	7
111	Isoflurane Prevents Neurocognitive Dysfunction After Cardiopulmonary Bypass in Rats. Journal of Cardiothoracic and Vascular Anesthesia, 2013, 27, 502-509.	0.6	4
112	TLR9 Deficiency Promotes CD73 Expression in T Cells and Diabetes Protection in Nonobese Diabetic Mice. Journal of Immunology, 2013, 191, 2926-2937.	0.4	41
113	Role of IRAK-M in Alcohol Induced Liver Injury. PLoS ONE, 2013, 8, e57085.	1.1	20
114	The Dual Effects of B Cell Depletion on Antigen-Specific T Cells in BDC2.5NOD Mice. Journal of Immunology, 2012, 188, 4747-4758.	0.4	24
115	TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H732-H742.	1.5	80
116	Epicutaneous immunization with DNPâ€BSA induces CD4 + CD25 + Treg cells that inhibit Tc1â€mediated CS. Immunology and Cell Biology, 2012, 90, 784-795.	1.0	18
117	The Role of Gr1+ Cells after Anti-CD20 Treatment in Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2012, 188, 294-301.	0.4	32
118	Type 1 Diabetes Therapy Beyond T Cell Targeting: Monocytes, B Cells, and Innate Lymphocytes. Review of Diabetic Studies, 2012, 9, 289-304.	0.5	3
119	IL-10-conditioned dendritic cells prevent autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice. Clinical Immunology, 2011, 139, 336-349.	1.4	60
120	In vivo diabetogenic action of CD4 ⁺ T lymphocytes requires Fas expression and is independent of ILâ€1 and ILâ€18. European Journal of Immunology, 2011, 41, 1344-1351.	1.6	11
121	Insulinoma-Released Exosomes or Microparticles Are Immunostimulatory and Can Activate Autoreactive T Cells Spontaneously Developed in Nonobese Diabetic Mice. Journal of Immunology, 2011, 187, 1591-1600.	0.4	94
122	Importance of TLR2 in the direct response of T lymphocytes to <i>Schistosoma mansoni</i> antigens. European Journal of Immunology, 2010, 40, 2221-2229.	1.6	22
123	To B or not to B—pathogenic and regulatory B cells in autoimmune diabetes. Current Opinion in Immunology, 2010, 22, 723-731.	2.4	11
124	Immunotargeting of insulin reactive CD8 T cells to prevent Diabetes. Journal of Autoimmunity, 2010, 35, 390-397.	3.0	20
125	Expression of Diabetes-Associated Genes by Dendritic Cells and CD4 T Cells Drives the Loss of Tolerance in Nonobese Diabetic Mice. Journal of Immunology, 2009, 183, 1533-1541.	0.4	33
126	Inflammatory Regulation by TLR3 in Acute Hepatitis. Journal of Immunology, 2009, 183, 3712-3719.	0.4	40

#	Article	IF	CITATIONS
127	Activation of Insulin-Reactive CD8 T-Cells for Development of Autoimmune Diabetes. Diabetes, 2009, 58, 1156-1164.	0.3	67

128 Editorial [Hot Topic: Innate Immunity and Autoimmune Disease (Guest Editors: F. Susan Wong and Li) Tj ETQq0 0 0.rgBT /Overlock 10 Tr

129	Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice. Journal of Autoimmunity, 2009, 32, 85-93.	3.0	77
130	Functional inhibition related to structure of a highly potent insulinâ€specific CD8 T cell clone using altered peptide ligands. European Journal of Immunology, 2008, 38, 240-249.	1.6	7
131	IFNâ€Î± Can Both Protect against and Promote the Development of Type 1 Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 187-189.	1.8	16
132	Antiâ€CD20 Treatment Prolongs Syngeneic Islet Graft Survival and Delays the Onset of Recurrent Autoimmune Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 217-219.	1.8	8
133	The Role of Tollâ€Like Receptors 3 and 9 in the Development of Autoimmune Diabetes in NOD Mice. Annals of the New York Academy of Sciences, 2008, 1150, 146-148.	1.8	76
134	Developing a Novel Model System to Target Insulinâ€Reactive CD8 T Cells. Annals of the New York Academy of Sciences, 2008, 1150, 54-58.	1.8	5
135	Tollâ€Like Receptors and Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 123-132.	1.8	45
136	Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 2008, 455, 1109-1113.	13.7	1,745
137	ICOS Mediates the Development of Insulin-Dependent Diabetes Mellitus in Nonobese Diabetic Mice. Journal of Immunology, 2008, 180, 3140-3147.	0.4	43
137 138		0.4	43 8
	Journal of Immunology, 2008, 180, 3140-3147. CD8+ T-cells and their interaction with other cells in damage to islet Î ² -cells. Biochemical Society		
138	Journal of Immunology, 2008, 180, 3140-3147. CD8+ T-cells and their interaction with other cells in damage to islet Î ² -cells. Biochemical Society Transactions, 2008, 36, 316-320.	1.6	8
138 139	Journal of Immunology, 2008, 180, 3140-3147. CD8+ T-cells and their interaction with other cells in damage to islet Î ² -cells. Biochemical Society Transactions, 2008, 36, 316-320. CD86 Has Sustained Costimulatory Effects on CD8 T Cells. Journal of Immunology, 2007, 179, 5936-5946. Converting antigen-specific diabetogenic CD4 and CD8 T cells to TGF-beta producing non-pathogenic	1.6 0.4	8
138 139 140	Journal of Immunology, 2008, 180, 3140-3147. CD8+ T-cells and their interaction with other cells in damage to islet Î ² -cells. Biochemical Society Transactions, 2008, 36, 316-320. CD86 Has Sustained Costimulatory Effects on CD8 T Cells. Journal of Immunology, 2007, 179, 5936-5946. Converting antigen-specific diabetogenic CD4 and CD8 T cells to TGF-beta producing non-pathogenic regulatory cells following FoxP3 transduction. Journal of Autoimmunity, 2007, 28, 188-200. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. Journal of	1.6 0.4 3.0	8 18 28
138 139 140 141	Journal of Immunology, 2008, 180, 3140-3147. CD8+ T-cells and their interaction with other cells in damage to islet Î ² -cells. Biochemical Society Transactions, 2008, 36, 316-320. CD86 Has Sustained Costimulatory Effects on CD8 T Cells. Journal of Immunology, 2007, 179, 5936-5946. Converting antigen-specific diabetogenic CD4 and CD8 T cells to TGF-beta producing non-pathogenic regulatory cells following FoxP3 transduction. Journal of Autoimmunity, 2007, 28, 188-200. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. Journal of Clinical Investigation, 2007, 117, 3857-3867. Age-dependent loss of tolerance to an immunodominant epitope of glutamic acid decarboxylase in	1.6 0.4 3.0 3.9	8 18 28 369

#	Article	IF	CITATIONS
145	The Influence of the Major Histocompatibility Complex on Development of Autoimmune Diabetes in RIP-B7.1 Mice. Diabetes, 2005, 54, 2032-2040.	0.3	8
146	Investigation of the Role of B-Cells in Type 1 Diabetes in the NOD Mouse. Diabetes, 2004, 53, 2581-2587.	0.3	176
147	The Effect of Innate Immunity on Autoimmune Diabetes and the Expression of Toll-Like Receptors on Pancreatic Islets. Journal of Immunology, 2004, 172, 3173-3180.	0.4	127
148	Autoimmune diabetes in HLA-DR3/DQ8 transgenic mice expressing the co-stimulatory molecule B7-1 in the cells of islets of Langerhans. International Immunology, 2003, 15, 1035-1044.	1.8	22
149	The Study of HLA Class II and Autoimmune Diabetes. Current Molecular Medicine, 2003, 3, 1-15.	0.6	22
150	A Reg Family Protein Is Overexpressed in Islets From a Patient With New-Onset Type 1 Diabetes and Acts as T-Cell Autoantigen in NOD Mice. Diabetes, 2002, 51, 339-346.	0.3	79
151	Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic) Tj ETQq1 1	0.784314 3.3	rgBT /Overlo 122
	of America, 2002, 99, 5539-5544.		
152	Analysis of structure and function relationships of an autoantigenic peptide of insulin bound to H-2Kd that stimulates CD8 T cells in insulin-dependent diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5551-5556.	3.3	58
153	Human DQ8 Can Substitute for Murine I-Ag7 in the Selection of Diabetogenic T Cells Restricted to I-Ag71. Journal of Immunology, 2002, 168, 3635-3640.	0.4	23
154	Type 1 Diabetes-Predisposing MHC Alleles Influence the Selection of Glutamic Acid Decarboxylase (GAD) 65-Specific T Cells in a Transgenic Model. Journal of Immunology, 2001, 166, 1370-1379.	0.4	30
155	The regulatory role of DR4 in a spontaneous diabetes DQ8 transgenic model. Journal of Clinical Investigation, 2001, 107, 871-880.	3.9	61
156	Pediatric Autoimmune Liver Diseases The Molecular Basis of Humoral and Cellular Immunity. Current Molecular Medicine, 2001, 1, 379-389.	0.6	66
157	In Vivo Evidence for the Contribution of Human Histocompatibility Leukocyte Antigen (Hla)-Dq Molecules to the Development of Diabetes. Journal of Experimental Medicine, 2000, 191, 97-104.	4.2	88
158	Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nature Medicine, 1999, 5, 1026-1031.	15.2	420
159	The Role of Lymphocyte Subsets in Accelerated Diabetes in Nonobese Diabetic–Rat Insulin Promoter–B7-1 (NOD-RIP-B7-1) Mice. Journal of Experimental Medicine, 1998, 187, 1985-1993.	4.2	73
160	γδT-cell help in responses to pathogens and in the development of systemic autoimmunity. Immunologic Research, 1997, 16, 229-241.	1.3	22
161	Analysis of the Peripheral T-Cell Receptor VP Repertoire in Newly Diagnosed Patients with Type I Diabetes. Autoimmunity, 1994, 18, 77-83.	1.2	5
162	T Cell Clones Generated from Patients with Type 1 Diabetes Using Interleukin-2 Proliferate to Human Islet Antigens. Autoimmunity, 1994, 17, 31-39.	1.2	13

LL	NU		
	- 17	v	F 1)
-			_

#	Article	IF	CITATIONS
163	Immunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in αβ(+) T cells. Nature, 1994, 369, 654-658.	13.7	175