Achilleas Savva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2489081/publications.pdf

Version: 2024-02-01

134610 182931 3,123 59 34 54 citations h-index g-index papers 62 62 62 3597 all docs docs citations times ranked citing authors

#	Article	lF	Citations
1	Organic Bioelectronics for <i>In Vitro</i> Systems. Chemical Reviews, 2022, 122, 4700-4790.	23.0	49
2	Understanding electrochemical properties of supported lipid bilayers interfaced with organic electronic devices. Journal of Materials Chemistry C, 2022, 10, 8050-8060.	2.7	20
3	A Lowâ€Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes. Advanced Materials, 2021, 33, e2005723.	11.1	33
4	Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angewandte Chemie - International Edition, 2021, 60, 7777-7785.	7.2	84
5	Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angewandte Chemie, 2021, 133, 7856-7864.	1.6	16
6	Influence of Side Chains on the n-Type Organic Electrochemical Transistor Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4253-4266.	4.0	76
7	Mixed Conduction in an Nâ€Type Organic Semiconductor in the Absence of Hydrophilic Sideâ€Chains. Advanced Functional Materials, 2021, 31, 2010165.	7.8	71
8	Regiochemistry-Driven Organic Electrochemical Transistor Performance Enhancement in Ethylene Glycol-Functionalized Polythiophenes. Journal of the American Chemical Society, 2021, 143, 11007-11018.	6.6	74
9	Reversible Electrochemical Charging of n-Type Conjugated Polymer Electrodes in Aqueous Electrolytes. Journal of the American Chemical Society, 2021, 143, 14795-14805.	6.6	62
10	An electroactive and thermo-responsive material for the capture and release of cells. Biosensors and Bioelectronics, 2021, 191, 113405.	5.3	4
11	The Effect of Alkyl Spacers on the Mixed Ionicâ€Electronic Conduction Properties of Nâ€Type Polymers. Advanced Functional Materials, 2021, 31, 2008718.	7. 8	67
12	Functional Infectious Nanoparticle Detector: Finding Viruses by Detecting Their Host Entry Functions Using Organic Bioelectronic Devices. ACS Nano, 2021, 15, 18142-18152.	7. 3	19
13	Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nature Materials, 2020, 19, 456-463.	13.3	187
14	In Situ Electrochemical Synthesis of a Conducting Polymer Composite for Multimetabolite Sensing. Advanced Materials Technologies, 2020, 5, 1900943.	3.0	39
15	Ethylene Glycol-Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance. Chemistry of Materials, 2020, 32, 6618-6628.	3.2	92
16	Optical and Electronic Ion Channel Monitoring from Native Human Membranes. ACS Nano, 2020, 14, 12538-12545.	7.3	51
17	Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nature Communications, 2020, 11, 3004.	5.8	82
18	The Key Role of Side Chain Linkage in Structure Formation and Mixed Conduction of Ethylene Glycol Substituted Polythiophenes. ACS Applied Materials & Interfaces, 2020, 12, 13029-13039.	4.0	78

#	Article	IF	Citations
19	Balancing Ionic and Electronic Conduction for Highâ€Performance Organic Electrochemical Transistors. Advanced Functional Materials, 2020, 30, 1907657.	7.8	131
20	Enzymeâ€Free Detection of Glucose with a Hybrid Conductive Gel Electrode. Advanced Materials Interfaces, 2019, 6, 1800928.	1.9	51
21	On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors. Advanced Materials, 2019, 31, e1902291.	11.1	52
22	High-Performance Organic Electrochemical Transistors Based on Conjugated Polyelectrolyte Copolymers. Chemistry of Materials, 2019, 31, 5286-5295.	3.2	56
23	Enhancing the Charge Extraction and Stability of Perovskite Solar Cells Using Strontium Titanate (SrTiO ₃) Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 8090-8097.	2.5	51
24	Solvent Engineering for Highâ€Performance nâ€Type Organic Electrochemical Transistors. Advanced Electronic Materials, 2019, 5, 1900249.	2.6	59
25	Inverted Perovskite Photovoltaics Using Flame Spray Pyrolysis Solution Based CuAlO ₂ /Cu–O Hole-Selective Contact. ACS Applied Energy Materials, 2019, 2, 2276-2287.	2.5	29
26	BMP-2 functionalized PEDOT:PSS-based OECTs for stem cell osteogenic differentiation monitoring. Flexible and Printed Electronics, 2019, 4, 044006.	1.5	11
27	Role of the Anion on the Transport and Structure of Organic Mixed Conductors. Advanced Functional Materials, 2019, 29, 1807034.	7.8	116
28	Influence of Water on the Performance of Organic Electrochemical Transistors. Chemistry of Materials, 2019, 31, 927-937.	3.2	140
29	The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes. Chemistry of Materials, 2018, 30, 2945-2953.	3.2	199
30	Lipid bilayer formation on organic electronic materials. Journal of Materials Chemistry C, 2018, 6, 5218-5227.	2.7	12
31	Employing surfactant-assisted hydrothermal synthesis to control CuGaO2 nanoparticle formation and improved carrier selectivity of perovskite solar cells. Materials Today Energy, 2018, 8, 57-64.	2.5	35
32	Visualizing the Solid–Liquid Interface of Conjugated Copolymer Films Using Fluorescent Liposomes. ACS Applied Bio Materials, 2018, 1, 1348-1354.	2.3	12
33	Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Science Advances, 2018, 4, eaat0911.	4.7	183
34	Ionic-to-electronic coupling efficiency in PEDOT:PSS films operated in aqueous electrolytes. Journal of Materials Chemistry C, 2018, 6, 12023-12030.	2.7	108
35	Photovoltaic limitations of BODIPY:fullerene based bulk heterojunction solar cells. Synthetic Metals, 2017, 226, 25-30.	2.1	14
36	Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14136-14144.	4.0	43

#	Article	IF	Citations
37	Room temperature nanoparticulate interfacial layers for perovskite solar cells <i>via</i> solvothermal synthesis. Journal of Materials Chemistry A, 2017, 5, 20381-20389.	5.2	33
38	The influence of additives in the stoichiometry of hybrid lead halide perovskites. AIP Advances, $2017, 7,$	0.6	7
39	The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells. APL Materials, 2017, 5, .	2.2	80
40	Improved Performance and Reliability of pâ€iâ€n Perovskite Solar Cells via Doped Metal Oxides. Advanced Energy Materials, 2016, 6, 1600285.	10.2	67
41	High performance indium tin oxide-free solution-processed organic light emitting diodes based on inkjet-printed fine silver grid lines. Flexible and Printed Electronics, 2016, 1, 035004.	1.5	22
42	The appearance of Ti3+ states in solution-processed TiO <i>x</i> buffer layers in inverted organic photovoltaics. Applied Physics Letters, 2016, 109, .	1.5	5
43	Solution-processed star-shaped oligomers in normal and inverted organic solar cells. Synthetic Metals, 2016, 215, 229-234.	2.1	2
44	Baselines for Lifetime of Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600910.	10.2	42
45	Linking the HOMO-LUMO gap to torsional disorder in P3HT/PCBM blends. Journal of Chemical Physics, 2015, 143, 224704.	1.2	17
46	Methods for Improving the Lifetime Performance of Organic Photovoltaics with Lowâ€Costing Encapsulation. ChemPhysChem, 2015, 16, 1134-1154.	1.0	72
47	High-Performance Inverted Organic Photovoltaics Without Hole-Selective Contact. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24608-24615.	4.0	9
48	Photovoltaic analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 507-514.	3.0	59
49	Evaporation-free inverted organic photovoltaics using a mixture of silver nanoparticle ink formulations for solution-processed top electrodes. Applied Physics Letters, 2014, 105, .	1.5	10
50	Inkjet printing processing conditions for bulk-heterojunction solar cells using two high-performing conjugated polymer donors. Solar Energy Materials and Solar Cells, 2014, 130, 474-480.	3.0	27
51	Investigating electrodes degradation in organic photovoltaics through reverse engineering under accelerated humidity lifetime conditions. Solar Energy Materials and Solar Cells, 2014, 130, 544-550.	3.0	41
52	Cesium-doped zinc oxide as electron selective contact in inverted organic photovoltaics. Applied Physics Letters, 2013, 102, .	1.5	31
53	Synergistic effects of buffer layer processing additives for enhanced hole carrier selectivity in inverted Organic Photovoltaics. Organic Electronics, 2013, 14, 3123-3130.	1.4	32
54	The Effect of Organic and Metal Oxide Interfacial layers on the Performance of Inverted Organic Photovoltaics. Advanced Energy Materials, 2013, 3, 391-398.	10.2	40

ACHILLEAS SAVVA

#	Article	IF	CITATIONS
55	Highly efficient indium tin oxide-free organic photovoltaics using inkjet-printed silver nanoparticle current collecting grids. Applied Physics Letters, 2012, 101, .	1.5	47
56	Superhydrophobic polymerâ€particle composite films produced using various particle sizes. Surface and Interface Analysis, 2012, 44, 870-875.	0.8	71
57	Bioelectronic Interfaces for Optical Stimulation of Neurons In-Vitro. , 0, , .		O
58	Influence of side chains on the n-type organic electrochemical transistor performance. , 0, , .		0
59	Multifunctional Organic Bioelectronic Interfaces for Monitoring and Controlling Cellular Activity. , 0, , .		0